Benthic biological processes

1

Tide level or depth	Zone	Characteristics	
	Supralittoral	Saline moistening Continuous emersion except at extreme high waters of spring tide	
Mean high water of spring tide			
	Mesolittoral	Daily cycles of immersion and emersion	
Mean low water of neap tide			
	Infralittoral	Continuous immersion except at low waters of spring tide	
Compensation depth of seagrasses or photophilic algae 15-20m at high lat. 30-40 m Mediterranean 80 m intertropical regions			
	Circalittoral		
Compensation depth of the algae tolerating the lowest light intensities (150-200m)			
	Bathyal	Continental slope and its foothills	
3500-4000m			
cono cron	Abyssal	Abyssal plains Hydrothermal vents	
6000-6500m		Deers treat the s	

	Particle sizes			
1.2. The substrate	φ scale	Size range (metric)	Aggregate class (Wentworth)	Other names
	< -8	> 256 mm	Boulder	
	-6 to - 8	64–256 mm	Cobble	
	-5 to - 6	32–64 mm	Very coarse gravel	Pebble
	-4 to - 5	16–32 mm	Coarse gravel	Pebble
Classification according to grain size	-3 to - 4	8–16 mm	Medium gravel	Pebble
	-2 to - 3	4–8 mm	Fine gravel	Pebble
	-1 to - 2	2–4 mm	Very fine gravel	Granule
	0 to - 1	1–2 mm	Very coarse sand	
	1 to 0	0.5–1 mm	Coarse sand	
	2 to 1	0.25–0.5 mm	Medium sand	
	3 to 2	125–250 µm	Fine sand	
	4 to 3	62.5–125 μm	Very fine sand	
	8 to 4	3.9–62.5 μm	Silt	Mud
	> 8	< 3.9 µm	Clay	Mud
	>10	< 1 µm	Colloid	Mud

2.2. CONSU 2.2.2. Cor Soft sub • Chemical ch • Vertical z	JMERS ntrolling factors <i>ostrate</i> naracteristics ronation of microorganisms	
Sediment	Bacteria	Characteristics
oxic	aerobic (some photosynthetic)	
RPD	chemosynthetic sulfur bacteria	oxidize H ₂ S
	fermenting bacteria	anaerobic heterotrophs transform organic compounds into fatty acids and alcohols by glycolysis
anovic	Sulfatoreducing bacteria	reduce SO_4^{2-} into H_2S
anoxic		

2.2. Consumers 3.1.2. Controlling factors *Rocky shores Biotic interactions:* ex. tide pools on rocky shores of New England **Total Constraints: Total Constr**

