

Historic temperature records

Temperature		
1978 - PRESENT DAY	satellite	global
1880 - PRESENT DAY	Thermometers Lake and ocean sediments, ice cores, stalagmites	global
2,000 YEARS AGO - 1880	Sediment and Ice cores tree-rings series	global
20,000 - 2,000 YEARS AGO	Ocean margin sediment cores lake and ice cores on land.	Global
800,000 - 20,000 YEARS AGO	proxy sea surface temperature records	Global

Historic CO₂ concentrations

CC	D ₂		
19	958 - PRESENT DAY	in situ air	Mauna Loa, Observatory, Hawaii
10	000 YEARS AGO - 1958	Ice cores	Law Dome, Wilkes Land Antarctica
80 10	00,000 YEARS AGO - 000 YEARS AGO	Ice cores	Antarctic Vostok and EPICA Dome C ice

Year 1780

Impact of OA: reproduction

Larval stages are very sensitive to OA:

Early development of Mytilus galloprovincialis. Morphology of larvae incubated for 120h and 144h control (380ppm; pH=8.13) or in CO_2 seawater (2000ppm; pH=7.42).

Early larvae of the brittlestar *Ophiothrix fragilis* reared in control seawater (pH 8.1, left), and water acidified with CO2 (pH 7.7 right), with a reduced skeleton as an effect.

Impact of OA: fisheries

OA can also have social and economic consequences, as, for example, fishery stocks might be affected

Impacts of OA and climate change on fisheries can be indirect as a species loss causes great instability on the ecosystem.

Furthermore, some species of seafood (shellfish) might be at direct risk.

Impact of OA

Acclimation - the progressive adjustments of an organism to any change in the environment that subjects it to physiological stress. It occurs in a short period of time (days/weeks-months) and within one organism lifetime

+

Adaptation - structural, physiological or behavioural characteristics of a population that allows it to be better suited for a certain environment. This process takes place over **many generations through natural selection**

Impact of global change in the ocean: Acclimation and adaptation

Legacy effects of multiple disturbance.

a, Disproportionate loss of abundant, susceptible tabular and branching *Acropora* corals on northern reefs in 2016, compared with more resistant mound-shaped *Porites*, increased community resistance to recurrent bleaching in 2017.

b, Corals in the southern Great Barrier Reef remained unbleached and dominated by *Acropora* in 2017, despite higher levels of heat exposure than in 2016.

(Hughes et al 2019)

