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Antarctic Circle, Reports
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and whales

* Image Source:
Antarctic Map Folio
Series, 1975
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HEROIC AGE 1897-1922

"The Renewal of Antarctic Exploration",
given to the Royal geographical Society in
London, November 27, 1893

The

Geographical Journal

No. L © JANUARY, 1894, © Vou IIL

THE RENEWAL OF ANTARCTIC EXPLORATION.*
By JOHN MURRAY, Ph.D., LL.D., of the “ Challenger” Expedition.

WHEN we cast a retrospective glance at the history of knowledge
concerning our planet, we find that nearly all the great advances in
geography took place among commercial—and in a very special
manner among maritime—peoples. ‘Whenever primitive races com-
menced to look upon the ocean, not as a terrible barrier separating
lands, but rather as a means of communication between distant
countries, they soon acquired increased wealth and power, and beheld
the dawn of new idess and great discoveries. Down even to our own
day the power and progress of nations may, in a sense, be measured by
the extent to which their seamen have been able to brave the many
perils, and their learned men have been able to unravel the many
riddles, of the great ocean. The history of civilisation runs parallel
with the history of navigation in all ils wider aspects.
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2nd International Polar Year

International Geophysical Year of 1957-1958
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Continent: 14 M km?2

Continental shelf deeper than usual (500-900m: 4x global
ocean average)

Due to isostasic subsidence > ice mass on the continent
(24.10'5T)

Narrower: 30-200 km (except Ross and Weddell Seas)
Basins usually deep (= 3000m)
Favours offshore and inshore water exchanges

Ocean encircles the continent: increases homogeneity



|. PHYSICO-CHEMICAL
ENVIRONMENT




I.1. WATER MASSES AND CIRCULATION
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Coastal current:
* East wind drift (anticlockwise)

Offshore current:

*  West wind drift = Antarctic circumpolar

current (ACC) (clockwise), main
circulation system of Antarctic water

masses

FIGURE 4. Circulation of the Southern Ocean, which
is bounded by the Antarctic continent and the seafloor
south of the Subtropical Convergence (Subantarctic
Front Zone). The predominant clockwise trajectory of
the West Wind Drift (Antarctic Circumpolar Current)
extends south of the Antarctic Convergence (Antarctic
Polar Front Zone), which is the northern boundary of
the Antarctic marine ecosystem. South of the West
Wind Drift is the counter-clockwise East Wind Drift and
the Antarctic Divergence between them. (Modified from
References 75, 93, and 214.)
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CCAMLR
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Conservation of Antarctic
Marine Living Resources
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Statistical Areas
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EKMAN
TRANSPORT

A Northern Hemisphere

wind

surface movement
20°—45° to the right
of the wind

average movement
due to Ekman transport
90° to the wind

B Southern Hemisphere

surface movement
20°— 45° to the left
of the wind

E wind

average movement
due to Ekman transport
90° to the wind
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Upwelling of Circumpolar Deep Water (>
North Atlantic Deep Water)

CDW mixes with cold Ice Shelf Water — sinks
as Antarctic Bottom Water (— up to 5°S)
CDW also mixes with less salty Antarctic
Superficial Water — Antarctic Intermediate
Water

AIW sinks below warmer Subantarctic water =
Polar Front = Antarctic Convergence
(downwelling)



|. PHYSICO-CHEMICAL ENVIRONMENT
|.1.WATER MASSES AND
CIRCULATION
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Segar 1997 The Southern Ocean plays a key role in the general thermohaline circulation
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EFFECTS OF CLIMATE CHANGE

Antarctic Surface waters Surface waters Circumpolar winds ~ Antarctic bottom  Upper-ocean Southern Ocean
Circumpolar innorthem partof  in southem partof ~ have strengthened water has become  coverturning eddy field

Current Southemn Ocean  Southern Ocean since 1960s-1970s  less voluminousin  circulation has intensified since
has shown have warmed have freshened {Box3.1;3A.1.3} Southern Ocean has been the early 1990s (+4
minimal change in  since 1980s (+++)  and cooled since and globally since characterised by

transportduring  {3.2.1.2,5222)  1980s () 19805 () decadal

instrumental $3212:5222) (3212,5222  variability (~)

record (==) BTt —— J

per Decade

1 ~0.2°C

WATER MASSES @ Warming

TW:  Subtropical Waters N . Ji

MW: Mode Waters ) Nowarming or cooling

IW:  Intermediate Waters @ Processes at play; see caption

CDW: Circumpolar Deep Waters
BW: Bottom Waters

I. Increased surface stratification
and shallowing of the Circumpolar
Deep Water layer,

2. increased heat uptake in the
subpolar basins

3. increased northward heat
sport associated with increased
subpolar heat uptake,

4. reduced eddy-mediated
southward heat transport across
the Antarctic Circumpolar Current

5. intrusion of CDWV onto the
continental shelves

6. warming of the bottom water

ventilating the abyssal ocean
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|. PHYSICO-CHEMICAL ENVIRONMENT
|.1.WATER MASSES AND
CIRCULATION

* Antarctic convergence = north
limit of Antarctic zone

* Between Antarctic and
Subtropical convergences =
Subantarctic zone

* Antarctic + Subantarctic zone=
Southern Ocean

* Subantarctic zone 2-4°C warmer
than Antarctic zone

» Antarctic convergence (Polar
front)= strong biological border
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1.3. SEA ICE oo A
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Sea ice concentration (%)
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Postet al. 2014



N X

Seasonal Marginal Ice Zone 15-80% Ice cover
Pack Ice Zone smaller, free-floating pieces of et Ocean
sea ice.
Perennial Shear Zone highly deformed ice along the
coast

Fast Ice Zone ice anchored to the shoreline

Fast ice (left) and pack ice (right).
(Left: Peterfitzgerald (Own work)
[CC BY-SA 3.0], via Wikimedia
Commons; Right: Markus Trienke,
https,//www.flickr.com/photos/mtr
ienke/34281559366/in/photostrea
m/ [CC BY-SA 2.0]).




2. PRIMARY PRODUCTION




Pico/nanaphytoplankton microphytoplankton

Flagellates centric diatoms (Bacillariophyceae)
Prasinophyceae Corethron
Cryptophyceae, Thalassiosira
Prymnesiophyceae Rhizosolenia,
Cryptomonas Fragilariopsis

Phaeocystis colonies (Prymnesiophyceae)

Species with a low Ks favoured in low nutrients Species with a high Ks favoured in high nutrients
concentrations but lower capacity — no or concentrations and able to incorporate high
limited blooms amounts of nutrients — blooms
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2.1. CONTROLLING FACTORS: LIGHT
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1.5
Marginal ice zone Closed pack
ice zone

) & Phytoplankton respiration
4 4 Net primary production
4

2.1, Sode .,
CONTROLLING O |

FACTORS: LIGHT L CHR ‘
—— ICE COVER

0 S W 1

0 20 40 60 80 100

Ice cover (%)

Fig. 7. Relationship between daily rate of net primary production
(A) and ice cover field in the sea ice associated areas (ie. the
marginal ice zone and the closed pack ice zone) of the northwestern
Weddell Sea during spring 1988. Phytoplankton respiration ( A) is

also shown

* No bloom if ice cover > 20%

Mathot et al 1992 . .
* => nanoplanktonic communities
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2.1. CONTROLLING .
FACTORS: LIGHT
«—— WIND

(MIXING)

16ms=

~100
WML depth, m

* No bloom‘ if wind speed > 8m/sec




2.2. CONTROLLING FACTORS:
NUTRIENTS




Offshore upwelling —

HNLC zone
NO;:32.5uM
PO4:2.5uM
SiO4: 100 uM

Sea-surface nitrate [mmol N m 3 ]
& N . N
0 5 10 15 20 25 30

Fig. 17.3 Map of High Nutrient-Low Chlorophyll (HNLC) regions around the world.
Measurement in map is of nitrate, with the scale as a gradient of color pictured on the bottom
(http://www.atmosphere.mpg.de/media/archive/1058.gif)
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Mesocosm Fe enrichment experiment

in the Antarctic Peninsula:

Initially: nano- and picoplankton
After 6d: shift towards diatoms

Phytoplankton biovolume (|.1m'3 ml'l)

+ nutrients

Thalassiosira
antarctica

Nano- and
Picoplankton

1 1 1 1

10 15 20 25 30
Time (days since start)

Fig. 8. Depth-integrated biovolume of diatoms and nano- and
picophytoplankton in the mesocosm (O) and the ambient
waters (®) during the experiment (January 19, 1999, to

February 21, 1999)



* Distribution of nitrate in the
surface ocean, showing elevated
concentrations in the three
HNLC regions of the Southern
Ocean, Equatorial Pacific and
Sub-Arctic Pacific.

* Location of twelve iron
fertilization experiments (white
crosses), natural iron fertilization
experiments (red crosses), and
excess surface nitrate
concentrations (colors on map).
Green cross is an iron plus
phosphorus experiment [ Boyd
et al., 2007]
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the surrounding waters (which exhibited no significant change in during SOIREE).
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days since 1st October 1992

swamco predictions at latitude 47°S (ANTX/6 site, Polar
Frontal Jet) : a) diatom development at different iron
concentrations; b) wind mixed layer depth; c) dissolved iron




2. PRIMARY PRODUCTION
CONTROLLING FACTORS

Controls on primary production in the Antarctic Ocea

Ice cover — > 20% < 20%

Mixing conditions — High Low

<1nM >2nM

Wl )

Nanoplankton community
controlled by fast-growing
microprotozoans

Fe concentration

Diatom bloom




Table 5.1 Iron distribution in the Southern Ocean

Site dissolved iron, nM Reference
Weddell/Scotia Sea >1 Nolting et al., 1991
Drake passage
inshore 57 Martin et al., 1990
offshore 0.1-0.9

Ross Sea
inshore >1 Martin et al., 1930
offshore <3

Atlantic sector : 6°W
ACC <1 de Baar et al., 1996
Polar Front >_i

Pacific sector : 89°W de Jong et al., in prep.
subabtarctic 0.5
Polar Front 0.6-1
ACC 0.5

cont. margin 0.6-1

Lancelot et al

Dissolved Fe: usually

<InM except

¢ Coastal zone and
above continental
plate (VWeddell and
Ross Seas)

* Downstream Drake
passage

¢ Marginal ice zone



Marginal ice zone

Sea ice concentrates airborne Fe
during winter

Psychrophilic algae seed the water
column when ice melts



* Open ocean:
* Low Pl (Fe low)

* Under pack ice:
* Very weak (no light)

* Marginal ice zone and
coastal zones:

» High PI (Fe high)




Phytoplankton
Pigment
Concentration
(mg/m3)

NASA/GSFC

The map displays the composite
of all Nimbus-7 Coastal Zone
Color Scanner data acquired
between Noverber 1978 and June
1986. Approximately 66,000
individual 2 minutes scenes were
processed to produce this image

Pl parallels Fe
distribution

Coastal zone and
above continental
plate (VWeddell and
Ross Seas)
Downstream Drake
passage

Marginal ice zone
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Depth

Macronutrient limited tropical ocean
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Iron limited Southern Ocean
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optimum depth of
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2. PRIMARY PRODUCTION
CONTROLLING FACTORS

Controls on primary production in the Antarctic Ocea

Ice cover — > 20% < 20%

Mixing conditions — High Low

<1nM >2nM

Wl )

Nanoplankton community
controlled by fast-growing
microprotozoans

Fe concentration

Diatom bloom




3. CONSUMERS




sea leopard

i sa !
e - &7 e

ciliates . yu
%) el )|
' gg PE— 1—)

}\ﬂf@ f[ F=
autotrophic flagella'tes } @ _

? heterotrophic dinoflagejfates

rorquals

s‘,, 9

Linear food chain

dissolved
matter

bacteria heterotrophlc flagellates
e/e c.2pqyC/C

nano
2-20pm —————= 20200

mucro

——=  2-5c¢m

Microbial loop Lancelot et al. 1996



3.1. MICROBIAL LOOP




Chlorophyll a, ug 1-1

% , Protozoa control

14 4% autotrophic nanoflagellates
12 i !

10 - !

Days

ice melting period under in situ grazing pressure by protozoa (solid

Predicted chlorophyll ¢ concentration at latitude 59 300 S durin% the
line) and after protozoa elimination (dashed line).

Lancelot et al. 1996



Table 3.I.: Estimated protozoan ingestion in the Southern Ocean: in percentage
of daily primary and bacterial production.

Area Period % of primary % of bacterial References
production production
grazed per day grazed per
day
Atlantic sector October- 40 32 Becquevort,
November 1996
ACC October/ 34 Klass, in press
November
Polar front area | October/ 44 Klass, in press
November
Weddell/ November 10 11 Garrison and
Scotia Sea Buck, 1989
Weddell/ November 68 83 Garrison and
Scotia Sea Buck, 1989
Weddell/ March 58 Garrison and
Scotia Sea . Buck, 1989
Weddell/ June/July 53 68 Garrison et al,
Scotia Sea 1990¢,d; 1992,
1993.
McMurdo December 9 Putt et al., 1991
Sound
McMurdo January 13 Putt et al., 1991
Sound
Indian sector March 50 90 Menon et al.,
1995
Indian sector (47->100) Taylor and
Haberstroh,
1988
Prydz Bay January 9 Archer et al.,
submitted
Prydz Bay February 22 Archer et al.,

submitted

Protozoa control autotrophic
nanoflagellates (ca. 50% production) —
no nanophytoplankton bloom

Lancelot et al. 1996



Table 3.I.: Estimated protozoan ingestion in the Southern Ocean: in percentage
of daily primary and bacterial production.

Area Period % of primary % of bacterial References
production production
grazed per day grazed per
day
Atlantic sector October- 40 32 Becquevort,
November 1996
ACC October/ 34 Klass, in press
November
Polar front area | October/ 44 Klass, in press
November
Weddell/ November 10 11 Garrison and
Scotia Sea Buck, 1989
Weddell/ November 68 53 Garrison and
Scotia Sea Buck, 1989
Weddell/ March 58 Garrison and
Scotia Sea . Buck, 1989
Weddell/ June/July 53 68 Garrison et al,
Scotia Sea 1990¢,d; 1992,
1993.
McMurdo December 9 Putt et al., 1991
Sound
McMurdo January 13 Putt et al., 1991
Sound
Indian sector March 50 90 Menon et al.,
1995
Indian sector (47->100) Taylor and
Haberstroh,
1988
Prydz Bay January 9 Archer et al.,
submitted
Prydz Bay February 22 Archer et al.,

submitted

Protozoa control
bacterial production
(10- 90% production)

Lancelot et al. 1996



Marginal Sea ice zone

%% . 88% (29/33 g.C)
A . F@_ of net Pl
| octeis— J25—bact.” | assimilated by the
/ pmmoj} microbial loop
* Net P2 of
microbial loop:
ot 25% (8/33 g.C) of
2 — P @@ NS - 12.5% (4133 )

of Pl not grazed
by microbial loop

gC/mziceretreat period

Budiet of C and N cycling through the microbial network of the
Lancelot et al. 1996 northern Weddell Sea during ice retreat 1988.



3.2. Linear food chain: krill (Euphausia superba)



* Malacostracea, Eucarid

* Adult 6.5cm long, Ig FWV, life span
4-7y

e Swimming speed: |km/h —
nekton!

* Make swarms of millions of T

en.mercopress.com
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Chlorophyll a
{mg. m*3)

20

30
Time 100

i) S0 Depth
0 ()

Three—dimensional evolution of a diatom bloom at station 157 in the
Weddell Sea (5th December 1988). The diatom bloom vanished in
less than 10 h, probably grazed down by a krill swarm, and the
phytoplankton community toppled towards a flagellate-dominated
system (from Jacques & Panouse, 1991).

Make swarms of millions of T
Aggregative distribution
corresponding to zones of high
Pl

Consumers of microplankton
Fast and massive consumption of
diatom blooms
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Primary production: Controlling factors

Controls on primary production in the Antarctic Ocean

Ice cover — >20% < 20%
Mixing conditions — High Low
) <1nM >2nM
Fe concentration
1A l l

. krill swarm
Nanoplankton community Diatom bl
controlled by fast-growing —~———— Uiatom bloom

microprotozoans

l

Microbial Linear food chain
food web




Mixing
| nutrients

Permanent thermocline

-y & Aggregate / Faecal peliet Kirill swarm

I Phytoplankton ' Phytoplankton Exoskeleton e Adult kill

. Faecal egestion from swarm (7"7% Ice algae ¢ ¥ CO, = Larval krill

https://doi.org/10.1111/gcb.16009
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3. Consumers
3.2. Linear food chain: Higher ranks

o S [

* Vertebrates
and squids

* Most are

krill eaters
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Chinstrap penyuins

Antarctic fur seals

Minke whale

Antarctic Krill

Phytoplankton



ADDITIONAL GRAZERS

>Copepods Salps

copepod abundance (no.m-2)
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Atkinson, A., Siegel, V., Pakhomov, E. et al. Long-term decline in krill stock and increase in salps within the
Southern Ocean. Nature 432, 100103 (2004). https://doi.org/10.1038/nature02996



/> Albatrosses
f,—-bToothed whales
Ommastrephid squid

Elephant seals

Mesopelagic fish
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Antarctic Polar Front




Copopods lower standing
biomass but higher
productivity

Flying seabirds

Chinstrap penyuins

Antarctic fur seals

Minke whale Lanternfish == Squids

Antarctic Krill T
Copspods

Phytoplankton j

Marginal Ice Zone



Flying seabirds
Penguins
Seals
Minke whale
Sq”'d‘ Other fish

Crystal krill Sllverﬁ,

& Phytoplankton J

Shelf Zone




. ) Gymnosome Salp chains Small euphausiids Copepods Krill swarms  Larval krill
Epipelagic  pteropods

S
I Amphipods I
Upper S
mesopelagic
4 A
500m
T T T T T T T T TlChaetognaths| T T T T T T T T T T T T T T T T e
KEY
I Daily migration
Lower
mesopelagic Predator-prey
ik interaction
I Seasonal
v 1000m migration
ST T T T T T T T Thecosome T T i e~ RS e S e S Intermittent
pteropods v forays
Solitary salps

Bathypelagic




A Living Laboratory of
Unique Biodiversity

Antarctic krill are a keystone species, serving as a major
food source for more than 25 percent of the species in
the diverse Antarctic food web, including penguins, seals,
whales, and many fish species. The many remarkable
species of the Southern Ocean make up some of the most
intact marine ecosystems on the planet, where scientists
are continually discovering new marine biodiversity, and
can study nature in the absence of human interference.

The following are some of the species that call the

Southern Ocean home.

Source: Claude De Broy

et al. (eds.), “Biogeographic Atlas of the Southern Oc

http://share.biodiversity.aq/Atlas/example_BASO_web.pdf

o Penguins
Adélie

Chinstrap

Gentoo

Emperor

King

Southern rockhopper
Macaroni

ientific Committee on Antarctic Rese

e Whales

Blue

Southern bottlenose
Humpback
Antarctic minke
Long-finned pilot
Sperm

Sei

Arnoux's beaked

Fin

Orca

9 Seals

Antarctic fur
Crabeater
Southern elephant
Leopard

Ross

Weddell

o Seabirds

Snow petrel
Wandering albatross
Antarctic petrel
Antarctic fulmar

O Fish

Antarctic and Patagonian
toothfish (Chilean sea bass)
Icefish

Lanternfish

Antarctic eel cod

Grenadier

McCain's skate

Marbled rockcod

@ Invertebrates

Krill

Antarctic sea spider
Crawling and glass sponges
Antarctic coral

Bone-eating worm

Yeti (hairy) crab

Octopus

Starfish

Colossal squid

© 2019 The Pew Charitable Trusts



A
KEY

Line types
mmm  Uncertain interaction

=mmm Known interaction

wes  |llegal unregulated and ”14\
unreported fisheries

Arrow ends \
—— No effect \
—J Positive effect on \
compartment arrow points to \ A
@— Negative effect on \
compartment touching filled

circle

t\
Groups - ﬁ

Benthic assemblage

Small phytoplankton o m‘

Large phytoplankton

Large sinking particles 5
Mesozooplankton

Antarctic krill

Mesopelagic fishes and squids

Salps

Baleen whales

10. Krill specialist predators

11. Fish and squid specialist predators 3 @ % 2
12. Toothfish @BDZ

13. Apex predators 3

14. Krill fisheries
15. Toothfish fisheries

@POWL ®

P sEmEN P

P

Seasonal Sea ice Species Environmental Fishing Spatial Biota
dynamics variations variation Al dynamics movements




Southern Ocean food webs

Southern Ocean food webs are of major importance to humans and the
global system, underpinning the existence of wildlife populations and
supporting high-value fisheries and carbon sequestration. Determining
how these food webs may respond to change requires understanding
multiple aspects of food web structure and function.

Pelagic food webs

O Alternative energy pathways
-

<o Active fishery
4 Recovering from past whaling

Apex predators

by

Generalist Baleen Krill
seabirds  predators whales specialist
predators

L) &= O9(w)

Fish & squid Toothfish Flying
specialist
predators

=@

Myctophids  Antarctic  Cephalopods
silverfish

DemE

Meso- Salps Other krill  Antarctic
zooplankton species krill

e

Small <€

» Large

Primary producers

Simplified food web representation. To interpret for individual
species, an understanding of what prey they consume is required

Alternative pathways for energy flow

Multiple alternative pathways of energy flow through
zooplankton and nekton groups are important for ecosystem
function, climate-driven changes and management.

Climate change impacts

Climate changes can cause cascading effects through Southern
Ocean food webs. Prominent changes include alterations to habitats
(e.g. temperature, pH, changes to sea-ice) that disrupt life cycles and
alter physiology generating shifts in the distribution and abundance
of many species.

Fisheries impacts

Current and historical harvesting (e.g. past
exploitation of whale populations) can alter predator
populations and community dynamics. Locally, fishing
can generate intense changes to food web structure
and dynamics.

Microbial networks and biogeochemistry

Southern Ocean food web structure, in particular the
composition of the main grazing community is crucial in
determining the dynamics of the planktonic community
and biogeochemical cycling.

Benthic food webs

Benthic systems influence carbon uptake and play an important
role in linking pelagic and seafloor systems (bentho-pelagic
coupling). Benthic organisms provide important supplementary
inputs to the pelagic system such as further food input for

glankton, and direct links to higher predators through demersal
ish.
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Catch (,000 tonnes)

Northern

Subantarctic

Sector

— Atlantic

— Central Indian
— East Indian
— West Pacific
— East Pacific

Antarctic

T
1910

T
1930

T T T

T
1950 1970 19

Year

T
90

T
2010

Blue

1920 1930 1940 1950 1960 1970 1980

Fin

T T T T
1920 19'30 19140 19%0 1960 1970 198(C

Sei

1920 1930 1940 1950 1960 1970 198C

Sperm Mink

Humpback

A \l, \/_/

1920 1930 1940 1950 1960 1970 198(C

* exploratory
sealing

* late 18th early
[9th century

* preindustrial
sealing and whaling

* 19th century
* industrial whaling

* 20th Century



Lower estimate Higher estimate

Krill production (10¢ Tiyear) * Krill eaters consume a significant part of krill

400 1385 production
Present * Before whale hunting, most of krill
Taxa Krill consumption (10 T/year) PVOdUCtlon was PrObabl)’ consumed

Cetaceans (baleen whales) 34 43 > BOttom'UP control
Seals (crabeater seal Lobodon 64 129
carcinophagus)
Cephalopods (principally squids of 30 50
the order Oegopsidea)
Birds (penguins accounting for 90% 25 50
of the biomass of and 86% of the
food consumed by Antarctic birds)
Fishes 10? 20?
(Champsocephalus gunnari
Notothenia rossii)
Total 163 292
% of krill production 163/1385= 12% 292/400=

73%

Before whale hunting

Baleen whales 190
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Minke

Humpback
Right Whale
Killer Whale)

BAS South Geokirgia wha-lerexpedition
Survey effort 10-30th January 2020
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Drivers of change in Southern Ocean habitats and ecosystems PREDICTED CONSEQUENCES

Changes in the Earth system are driving changes in Southern Ocean habitats and ecosystems. These changes are
driven by global drivers that originate from the atmosphere and ocean, largely external to the Southern Ocean.
The key global drivers and their expected influence on key processes within the Southern Ocean are represented
below. The majority of these global drivers have an anthropogenic component, reflecting the reach of human
activity.

Ice-shelf collapse
Driver:

Impacts: Altered stability of the
water column and mixed layer
depth

Sea-ice loss

Driver: ’

Impacts: Increased vertical
mixing and nutrient supply

Iron supply
Ozone loss

Glacial retreat
Driver:

Temperature

¢ Front. Mar. Sci., |5

December 2020 Carbon dioxide (CO,) Impacts: Primary productivity,
uptake pelagic and benthic food webs
* Sec. Global Ocean acidification

Driver:

Impacts: Ecosystem structure /
function, carbon export,
shallowing of ASH and
biogeochemical cycling.

Change and the
Future Ocean

®-
‘ Wind & weather
* https://doi.org/10.

3389/fmars.2020.
547188

Ocean warming

Driver: ’

Impacts: Species migrations,

+/- Southern ) ecosystem structure / function
Annual Mode
(wind strength) i
Shallowing of deep-water
Range shifts Driver: .
Impacts: Ice shelf / sheet
stability, benthic habitats
Plastic pollution .
Changes to primary
productivity

Drivers: .‘

Impacts: Ecosystem structure /
function, carbon uptake

MEASO



Local drivers of change in
Southern Ocean ecosystems

Local drivers (activities or processes that cause physical or ecological changes)
influence Antarctic ecosystems at a particular location or series of locations.
These may be associated with current human activities or recovery from past
activities within the Antarctic region. The key local drivers and their influence
on Southern Ocean ecosystems are represented below.

Marine-derived pollution &,

The increasing number of science, tourist and fishing vessels
visiting the Antarctic region each year poses risks of pollution
(plastics, chemicals and hydrocarbons) including oil spills.

Land-derived pollution <- B3

Human activities on land, both scientific and tourism-related,
increase the risk of sewage runoff and point source pollution
(plastics, chemicals and hydrocarbons).

Non-indigenous species 48,

All vessels pose the risk of transporting non-indigenous species
(including disease-causing species) to the Antarctic region in
ballast water or on hull surfaces, as well as being taken ashore
by visitors or in cargo.

Tourism and visitation @D

In addition to 1 and 3, visitor activities (both tourists and
scientists) may cause disturbance to wildlife when visiting
land-based colonies, or undertaking activities such as kayaking
or diving.

Marine mammal recovery b

Many marine mammal species are recovering from past
exploitation. Local population increases may influence krill
swarms as well as oceanic nutrient enrichment and mixing.

Fishing Lo

In addition to 1 and 3, fishing activities including long-lining and
pelagic trawling pose local risks such as depletion of fish/krill
stocks, incidental mortality, entanglement, bycatch of non-target
species, and physical damage to vulnerable marine ecosystems
such as benthic habitats.

Coastal change v

Ice loss from coastal glacier retreat and ice shelf collapses may
cause increased scouring and impacts on local benthic
biodiversity.




How will benthic communities of the Antarctic shelf respond?

Antarctic benthic communities vary in their potential response to drivers of change. Here we represent the hypothesised individual impact
of five prevalent drivers of change in the Antarctic region on seafloor communities.

Undisturbed scenario

Demersal fish : Fishery
£ e pressure

in ocean ” Fewer fish,
temperature ) : =1 Glass sponge Co

i rals || o fewer slow-
Fewer low- R g - (((,])) growing species
temperature . w ;j; < \i(( (\‘ / ) } //' e.g. sponges
adapted species, ‘ and more

increase in king Brittleletar Featherstar " fast-growing,
crab abundance . Sea urchin “ fast-recruiting
§\}\\\» e species

Wy r‘N? Sea

= squirts

Ocean

Decrease in L P Jj‘)} a gy
seaice (MWW 7 & aC|d|f1cat|9n
More opportunists and = ; zsv‘!:lrdsfsiencglecsérsaulgh
fewer specialised S, (2 D . oy
suspension-feeders \7%;/ \\2: ((/ {’\ )% E:\:]Vef%ll?ti‘:'es might
VNS 3
CAY )

s

Increase in iceberg scouring

- More fast-growers (e.g. sea-squirts),
((/ ){}\\ more mobile species**

*Non-calcifying species can suffer from ocean acidification.
**|ncreased scouring will also lead to higher habitat fragmentation/patchiness
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Antarctic Research,
Fisheries Data and Analysis

v

v

CCAMLR WG — Ecosystem
Monitoring and Management

CCAMLR WG - Fish Stock
Assessment

—

l—l

CCAMLR Scientific Committee

Standing Committee
Implementation and Compliance

Standing Committee
Administration and Finance

—

A 4

l—l

CCAMLR Commission

v

Conservation Measures




FISHERIES
BIOMASS Fishery

. Groundfish

Icefish
Toothfish
B Toothfish TUU
Silverfish
Myctophids
Y il
. Squid
. Crabs

1960 1970 1980 1990 2000 2010
Decade
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TRACKING
TOP

PREDATORS

Latitude

Antarctic fur seal - summer

Chinstrap penguin - summer

Gentoo penguin - summer

Adelie penguin - summer

-64 -62 -60 -58 -56
Longitude

Antarctic fur seal - winter

| B T T T T T
-64 -62 -60 -58 -56  -64 -62 -60 -58 -56
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Chinstrap penguin - winter

-64
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Pre-moult and incubation shift
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Marine Protected Areas in the Southern Ocean (Dec. 2017)

~ :
S Antarctic Treaty Area

. Existing CCAMLR MPAs.

CCAMLR MPAs proposals.
under discussion.

B
. CCAMLR MPA proposals
in development.




Species

Mirounga leonina 4
Thalassarche melanophrys
Diomedea exulans -
Arctocephalus gazella-
Leptonychotes weddellii-

Pygoscelis adeliae-l . I .

Procellaria aequinoctialis -
Aptenodytes forsteri4
Eudyptes chrysolophus 4
Lobodon carcinophaga -
Aptenodytes patagonicus -
Megaptera novaeangliae 4
Thalassarche chrysostoma

'.'..'..im--'
| IIIIII L

Phoebetria palpebrata -
Phoebetria fusca
Eudyptes schlegeli I I .I I
= A A S N NN RN RN DNDNDNDNDDNNDN
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NOROONDOOINOENOIDDOO=2N®ROO
Year

Hindell, Re

Ropert-Coudert, Van de Putte, Bornemann et al. 2020

Number of individual tracking days
I

50 100 150 200
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Stage- and species-specific 1. Habitat selection model
habitat importance
e.g., king penguin chick-rearing Environmental covariates Habitat selection

Boosted trees

Observed and simulated tracks

Habitat selection given accessibility

2. Habitat accessibility model

Distance to colony* Habitat accessibility

Shape-contstrained
additive model .
Percentile
—) transformation

) . Habitat importance
*This layer can be weighted by

relative colony size; the unweighted
version is shown here and down-
stream.
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The exam will be 30 min long, starting with a PowerPoint presentation of a
scientific article in direct relationship with the course, in 10 min (strict
maximum!), including a critical view and followed by a discussion of the
subject. For that discussion, the knowledge of the course is necessary!.
This discussion may possibly bring you to other subjects (transverse
comparisons). So, if you choose an article on the impact of global change on
coral reefs, expect questions dealing with coral reefs but also on chemical
oceanography or on top-down control in benthic ecosystems (for instance).




The article
You chose the article
It should be
a recent (not earlier than 2015) scientific research article
not a review, not a descriptive faunistic list, not a data paper, not a popular science paper
avoid inventories or natural history of a species or taxon
in relationship with the course
ecological processes; effects of global change; connectivity in the marine environment
in case of a modelling article, be sure to master the modelling aspects (be able to explain how an independent variable is acting on the dependent variables)
Examples:
Are fisheries impacting breeding seabirds of the North Sea?
Are coral reef sea urchins controlled by bottom-up or top-down factors?
Do the introduced starfish Asterias amurensis have an impact in Southern Australia?

Do food or wave impact control biodiversity on sandy beaches?




Contents of the presentation (10 min maximum)

Short introduction to the question

Short explanation of the experiments designed to answer the question (do not enter into
the details of the “Materials and Methods” section)

Results (to be supported by sraphs/tables)

Discussion and conclusions

Your own critical assessment of the presented article
are the results convincing?
is the statistical support sufficient?

do results support the conclusions?
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THE LINKAGES BETWEEN
THE GLOBAL DRIVERS AND
THE BENTHIC AND
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