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Distribution of coral reefs

Charles Darwin (1809-1882)

1831-1836: Circumnavigation with HMS Beagle
1839: “Voyage of the Beagle”

1842: “The structure and distribution of coral reefs”
1859: “The origin of species”
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Distribution of coral reefs
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Distribution of coral reefs
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© M. Kochzius

(32.3 %)
Estimates of global coral reef area:
e Smith (1978): 617,000 km?
 Spalding & Grenfell (1997): 255,000 km?
 Spalding et al. (2001): 284,300 km?
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Coral reef biodiversity
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Coral reef biodiversity
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Fish: species
richness based on
1700 species (40 %

of all known species)

| Scleractinian corals:

species richness
based all known 804
species

Snails: species
richness based on
662 species of cone

shells, cowries and
volutes

Lobsters: species
richness based on
69 species from 7
families

Roberts et al. (2002)
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Coral reef biodiversity

Coral reefs cover only 0.089 % of the world’s
oceans (Spalding et al. 2001), but:
e about 70,000 described species life on coral
reefs
= 30 % of all marine species
=5 % of all species
e estimated number of species: 830,000 (Fisher et
al. 2015)

Center of coral reef biodiversity in the Coral

Triangle (Southeast Asia):

e centre-of-origin hypothesis: species evolve in
the centre and disperse

e centre-of-overlap hypothesis: overlap of fauna
from several biogeographic provinces

e centre-of-accumulation hypothesis: speciation
in peripheral areas and dispersal to the centre

* centre-of-survival: species get extinct elsewhere
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Coral reef biodiversity: regional-scale assembly rules in fish and corals
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Fig. 2. Contribution to the total species pool of the three most abundant fish and coral families
across a range of total species richnesses. Upper and lower lines are bootstrapped 95% confidence
limits based on random selection of species from the total species pool (73). Other families show

similar patterns (compare Fig. 3). Bellwood and Hughes (2001)
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Coral reef biodiversity: regional-scale assembly rules in fish and corals
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Fig. 3. Latitudinal and longitudinal changes in the taxonomic composition of fishes and corals.
Taxonomic composition is expressed as the score on the first axis (PC1) of a principal components
analysis (40), which provides a quantitative description of the degree of taxonomic similarity
between fish or coral assemblages at different locations (Fig. 1). Two locations with the same PC1
score share similar species richness in those families that account for the greatest variation among
sites. Latitude and longitude values are given in degrees from the equator or degrees east or west

of Greenwich. Lines indicate the mean * 2 SEM. Bellwood and Hughes (2001)
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Coral reef biodiversity: regional-scale assembly rules in fish and corals

Fig. 4. Analysis of factors influencing biodiver-

sity of coral reefs, illustrated by the percent
% % % variation in taxonomic composition of fish and
— coral assemblages explained by habitat area,
longitude, and latitude. The score on the first
axis of a principal components analysis pro-
vides a quantitative description of each assem-
blage (40) (Fig. 3). Of the four factors exam-
ined, the three shown here were significant in
best-fit multiple regression models (***P <
0.001, *P < 0.05), with habitat area explaining
approximately half of the variation (26).
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Coral reef biodiversity: threats
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Coral reef biodiversity: threats
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Coral reef biodiversity: intermediate disturbance hypothesis
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Coral anatomy

Castro & Huber (2010)
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Coral anatomy: zooxanthellae

Castro & Huber (2010)
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Coral anatomy: calcification
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Coral anatomy: growth forms

Castro & Huber (2010)
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Coral anatomy: growth forms
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The structure of coral reefs: reef growths
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The structure of coral reefs: fringing reef
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The structure of coral reefs: barrier reef
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The structure of coral reefs: atoll
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The structure of coral reefs: atoll
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The trophic structure of coral reefs

Wrasses

Damselfishes
(eggs, larvae)

e —

Zooplankton Q JZ
(mu;us) I
L4

Triggerfishes

Butterflyfishes
(coral, eggs,

* Castro & Huber (2010)

VRIJE
. . . Prof. Dr.
m UNIVERSITE Marine Ecology/Fisheries — Coral Reefs Mare Kochaius 24



The trophic structure of coral reefs

Predators .
fishes, squids, snails sl Herbivory

mmssl Predation
[ > Detritus feeding or export

sl Contribution to detritus pool

Consumers - Grazers Detritus feeders Coral and coral mucus feeders Plankton feeders
fishes, urchins, snails, sea cucumbers, worms, fishes, sea stars, crabs fishes, sea fans, feather stars
chitons amphipods, soft corals
=
)
— %78
From other
communities Plankton
(estuaries, Detritus
— subtidal, especially
mangroves and
seagrass beds) ‘
Seaweeds, coralline algae, Corals / Zooxanthellae
photosynthetic bacteria
Producers -
- Castro & Huber (2010)
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Phase shifts in Caribbean coral reefs
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Fig. 3. Degradation of Jamaican coral reefs over * Mass mortality of Diadema antillarum in
the past two decades. Small-scale changes in (A) 1983 due to a species-specific pathogen
coral cover and in (B) macroalgal cover over time e Hurricane Allen (category 5) in 1980
at four depths near Discovery Bay (32). damaged shallow water reefs severely
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Phase shifts in Caribbean coral reefs
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Fig. 4. Long-term dynamics of the echinoid Dia-
dema antillarum on Jamaican reefs. (A) Abun-
dances over time based on estimates at 14 sites
along >100 km of coastline over nearly two dec-
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Phase shifts in Caribbean coral reefs

Fig. 6. Large-scale community phase shifts on

Discovery Bay Jamaican reefs, from coral- to algal-dominated
) Rio Bueno g Pear Tree Bottom systems (34).
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Fig. 5. Large-scale chang-
es in community structure
at fore-reef sites along
>300 km of the Jamaican

coastline, surveyed in the ¢ Decline in coral cover from a mean of 52 %

late 1970s (1977, hatched (1977-1980) to 3 % (1990-1993)

bars) and the early 1990s ¢ Increase in cover of fleshy macroalgae from

(1993, solid bars) (34). am mean of 4 % (1977-1980) to 92 %
(1990-1993)

Hughes (1994)
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Phase shifts in Caribbean coral reefs

Fig. 2. Total observed
change in percent cor-
al cover across the Ca-
ribbean basin during
the past three dec-
ades. (A) Absolute
percent coral cover
from 1977 to 2001.
Annual coral cover
estimates (A) are
weighted means with
95% bootstrap confi-
dence intervals. Also
shown are unweighted
mean coral cover esti-
mates for each year
(@), the unweighted
mean coral cover with
the Florida Keys Coral
Monitoring Project
(1996-2001) omitted
(X), and the sample
size (number of stud- d 6
ies) for each year (O). 0 0

120

1000 km

.

o
o

Number of studies

o
o

Absolute % coral cover

Gardner et al. (2003)
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Phase shifts in Caribbean coral reefs
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Phase shifts in Caribbean coral reefs

Annual rate of change in
(C,) % coral cover (Cg)
= o

Absolute change in %
coral cover

_
o

)
(=]

-

?!l!

USVI/ Jamaica Northern Leeward Southern
Central Netherlands Central
America Anftilles Amaearica

Florida
Puerto
Rico

'

"

r30

90

10

50

r10

20

significantly

positive

apes

significantly negatlve

D-

L

significantly

negative .

1975

1980 1985 1990 1995 2000

- 140

r100

60

20

140

100

60

20

* Number of studies

Fig. 3. Coral cover change for subregions of the Caribbean and for 5-year time periods from 1975
to 2000, expressed as annual rate of change in percent coral cover, C, (A and C), and as change in
absolute percent coral cover, C, (B and D). The Leeward Netherlands Antilles includes Venezuela.
Temporal averages were taken across all studies whose midpoint fell within each time interval; time
periods are indicated by the first year of the interval. For the interval starting in 2000, only 2 years
are included. Bootstrap-generated 95% confidence intervals and sample sizes are shown.
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Phase shifts in Caribbean coral reefs

Fig. 4. Subregional variability 60

in mean rate of change in
coral cover observed during
the decades starting in 1980
(open bars) and 1990
(shaded bars). Geographic
regions are as in Fig. 3.
Bootstrap-generated  95% 20
confidence intervals are
shown. Sample sizes for the
1980s and 1990s, respective-
ly, are as follows: Florida, 4
and 64; US. Virgin Islands
(USVI)/Puerto Rico, 33 and

26; Jamaica, 29 and 7; north-

ern Central America, 12 and -20

01980s
®1990s

40

Annual rate of change in % coral cover (Cy)

i h L . Florida USVIl  Jamaica Northen Southern Leeward
29; southern Central America, Puerto Central Central Netherlands
8 and 3; and Leeward Nether- Rico America America  Antilles

lands Antilles, 4 and 12.

Severe degradation of the Mesoamerican barrier reef system after bleaching caused by the 1998 El Nifio

and hurricane Mitch
Gardner et al. (2003)
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Degradation of the Great Barrier Reef
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Figure 1 Degradation of coral reefs. a, Results of a meta-analysis of the literature,
showing a decline in coral cover on the Great Barrier Reef. Each point represents the
mean cover of up to 241 reefs sampled in each year. b, The recorded number of reefs
on the Great Barrier Reef, Australia, substantially damaged over the past 40 yr by
outbreaks of crown-of-thorns starfish (COTS) and episodes of coral bleaching.

Year

Great -
Barrier
eef

Bellwood et al. (2004)
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Degradation of the Great Barrier Reef
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Fig. 1. Coral cover on the GBR. (A) Map of the GBR with color shading indicating mean coral cover averaged over 1985-2012. Points show the locations of the
214 survey reefs in the northern, central, and southern regions, and their color indicates the direction of change in cover over time. (B) Box plots indicate the
percentiles (25%, 50%, and 75%) of the coral cover distributions within each year and suggest a substantial decline in coral cover over the 27 y.

Based on the world’s most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985-2012), the
authors show a major decline in coral cover from 28.0 % to 13.8 % (0.53 % y~1), a loss of 50.7 % of initial coral cover
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Degradation of the Great Barrier Reef
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Fig. 2. Temporal trends in coral cover (A-D) and annual mortality due to COTS, cyclones, and bleaching (E-H) for the whole GBR and the northern, central,
and southern regions over the period 1985-2012 (N, number of reefs). (A-D) Trends in coral cover, with blue lines indicating estimated means (+2 SEs) of each
trend. (E-H) Composite bars indicate the estimated mean coral mortality for each year, and the sub-bars indicate the relative mortality due to COTS, cyclones,
and bleaching. The periods of decline of coral cover in A-D reflect the high losses shown in E-H.

De’ath et al. (2012)
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Crown-of-thorns starfish (Acanthaster planci)
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Crown-of-thorns starfish (COTS) outbreaks

Laboratory experiments

Proportion of larvae
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Fig. 2 a Relationship between chlorophyll a concentration and the
proportion of A. planci larvae completing their development. b Body
length of A. planci larvae at 17-20 days of age. Each point represents

the mean results of duplicate or triplicate deployments per treatment.
Black lines are model fits, the thin black lines are 2 SE of the mean
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Fabricius et al. (2010)
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Crown-of-thorns starfish (COTS) outbreaks
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Fig. 4 Cumulative discharge volumes of the Burdekin River into the
GBR for each year since 1922. Red lines indicate the three large
floods that preceded the three recorded primary outbreaks of A. planci
in 1966, 1979 and 1994. The dark gray line shows an early large flood
in 1951, but no data exist from that period. The blue lines show the
large 2008 and 2009 Burdekin floods, potentially predicting the onset
of a fourth primary outbreak
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Fig. 5 Satellite image of the central GBR (Modis, 10th February
2007), also showing the locations of the mouths of the main rivers,
and towns (filled square). All inshore reefs, and the mid- and outer-
shelf reefs north of latitude 17°S (the presumed location of source
reefs for primary A. planci outbreaks on the GBR, red box) are
inundated by flood waters from the merged plumes of several rivers,
while the remaining mid- and outer-shelf reefs are not intercepted by

the flood plumes during this moderate flood event .. o i1 (2010)
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Crown-of-thorns starfish (COTS) outbreaks

Fig. 6 Relationship of
Acanthaster planci population
dynamics and chlorophyll in the
Great Barrier Reef (GBR) off
the NE of Australia. a Map of 14
the GBR. b Long-term average
chlorophyll concentrations in
the GBR in the far northern
(FN, blue) and central/northern 16
(CN, red) region, monitored
near-monthly since 1992.
Applying the results from the
laboratory experiments ¢
showed that the odds for L
survival of A. planci larvae
was ~ 8-fold higher at
chlorophyll levels found in CN
compared with FN. Simulations 20
of A. planci and coral

population dynamics show that

in FN (d), outbreaks occur at

50-80-year intervals and coral

cover recovers between

outbreaks (Table 4). In CN (e),

outbreaks occur at 15-year

intervals and corals only recover

to 3040% of potentially

obtainable values. These data

form the basis to model the

transition (f) in chlorophyll, A.

planci and coral cover in CN

from pre-European (blue) to

contemporary levels (red)
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Coral bleaching
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Coral bleaching

Temperature anomoly (°C)
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Marshall & Schuttenberg (2006)
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Coral bleaching
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Fig. 2. Bleaching severity differs within and between species, but yvithin-population variation ir} the temperature at whic[l bleaching
these differences vary among bleaching events. (A) Estimated is expected to OCCUI'.. (B) Vé.lnal'lon in bleaching lntenSIty between
probability distribution of bleaching thresholds for five species of Kenya and Australia, during the 1998 mass bleaching event
Caribbean corals, based on logistic regression models fitted to [compare with figure 2 in (28)]. Bleaching intensity is a weighted
bleaching data from the Florida Keys and Dry Tortugas, under average of the proportion of colonies in different bleaching cate-
environmental conditions corresponding to the average observed gories (28). Taxa are displayed in rank order of bleaching severity

for each species (29). The width of the distribution indicates the in Kenya. Data provided by A. H. Baird and T. R. McClanahan.
Pandolfi et al. (2011)
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Coral bleaching

Marshall & Schuttenberg (2006)
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Coral bleaching

Global sea surface temperature change
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Figure 11.19: Projected changes in annual-averaged, globally-averaged, surface ocean temperature based on twelve
AOGCMs from the CMIP5 (Meehl et al., 2007b) multi-model ensemble, under 21st century Scenarios RCP2.6,
RCP4.5, RCP6.0 and RCP8.5. Shading indicates the 90% range of projected annual global-mean surface temperature
anomalies. Anomalies computed against the 19862005 average from the historical simulations of each model.

IPCC (2013)
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Coral bleaching: remote sensing (NOAA)

Table 1. Stress levels based on current algorithms for producing the
CRW coral bleaching HotSpot and Degree Heating Weeks (DHW)
products derived from nighttime satellite SST data.

MAP 3.3. FREQUENCY OF FUTURE BLEACHING EVENTS IN THE 2030s AND 2050s

= Stress Level Definition Effect
No Stress HotSpot <0 --
Bleaching 0 < HotSpot < 1 --
Watch

Bleaching 1 <HotSpot and Possible
Warning 0<DHW <4 Bleaching
Bleaching 1 <HotSpot and Bleaching

Alert Level 1 4 <DHW < 8 Likely
Bleaching 1 <HotSpot and Mortality

Alert Level 2 8 <DHW Likely

Liu et al. (2012)
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Coral Reefs Frequency (Percent of Years) of NOAA
Bleaching Alert Level 2 Events

B o-10 [ 21-30 [ 41-50 [] 61-70 ] 81-90
B 11-20 [ 31-40 [] 51-60 ] 71-80 [ o1-100

Note: Frequency of future bleaching events in the 2030s and 2050s, as represented by the percentage of years in each decade where a NOAA Bleaching Alert Level 2 is predicted to occur. Predictions are
based on 2n IPCC A1B ("business-as-usual") emissions scenario and adjusted to account for historical temperature variability, but not adjusted by any other resistance or resilience factors.

Source: Adapted from Donner, S.D. 2009. “Coping with commitment: Projected thermal stress on coral reefs under different future scenarios.” PLoS ONE 4(6): e5712. Burke et al (201 1)
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Coral bleaching: adaptive bleaching hypothesis
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Figure 1 Distribution of Symbiodinium algae in shallow-water (less than 7 m depth) scleractinian corals from Kenya, Mauritius, Saudi
Arabia and Pacific Panama. Pie charts show distribution of symbionts by site, except those for Panama, which show the distribution of
symbionts at a single site before (1995: all colonies healthy), during (1997: some colonies healthy, others severely bleached) and after
(2001: all colonies healthy) the 1997-98 El Nifio. Size of pie charts is scaled to the square-root of sample size to reflect an equal area for
each sample, as indicated by the inset scale. See supplementary information for sampling details for each country.

Baker et al. (2004)
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Resilience of coral reefs: coral bleaching and herbivory

Figure 1. Experimental Phase Shifts on the Great Barrier Reef

(A) Roofless cages and partial cages constructed on the seaward edge of reef crest. Each structureis 5 X 5 min area and 4 m tall. Note the 2m
high door in the cage in the center of the photograph, for access at low tide.

(B) Growths of Sargassum up to 3 m tall dwarf understory corals inside a fish-exclusion cage.

(C) When fishes were experimentally excluded, a foliose coralline alga, Mesophyllum purpurescens, replaced shallow-water grazer-resistant

species.
(D) Coral recruits settled on dead corals killed 5 years earlier by thermally induced bleaching in 1998. Grazing of the dead substrate by herbivores
is crucial for settlement and early survival of corals and coralline algae. Hughes et al. (2007)
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Resilience of coral reefs: coral bleaching and herbivory
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Figure 2. Contrasting Trajectories of Macroalgae and Corals after (B) Relative coral cover over time among three experimental treat-
Exclusion of Fishes ments. Absolute coral cover after 130 weeks was 7.7% = 1.0%
(A) Macroalgal cover. Error bars are SE. (S.E.), 19.2% = 2.3%, and 20.2% = 2.2% in the three treatments
(see text for analysis). Census dates were the same for all treatments
and are slightly staggered in the plots for clarity. Error bars are SE.

Hughes et al. (2007)
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Resilience of coral reefs: coral bleaching and herbivory
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Resilience of coral reefs: overfishing, herbivory and MPAs
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Resilience of coral reefs: overfishing, herbivory and MPAs
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Fig. 4. Mean grazing intensity of and outside the ECLSP. Reserve
parrotfishes (black bars) and macro- impacts are significant (P < 0.01)
algal cover (gray bars) (+SE) inside for each variable. Mumby et al. (2006)
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Resilience of coral reefs
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Resilience of coral reefs
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Figure 3 Functional composition of Caribbean and Great Barrier Reef assemblages of
fishes and corals. The fourteen fish and eleven coral functional groups are identified by

their roles in ecosystem processes.
Bellwood et al. (2004)
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Climate change

CO.,Time Series in the North Pacific
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FAQ 3.2, Figure 1: A smoothed time series of atmospheric CO, mole fraction (in ppm) at the atmospheric Mauna Loa
Observatory (top red line), surface ocean partial pressure of CO, (pCO,; middle blue line), and surface ocean pH
(bottom green line) at Station ALOHA in the subtropical North Pacific north of Hawaii for the period from1990-2011
(after Doney et al., 2009; data from Dore et al., 2009). The results indicate that the surface ocean pCO, trend is
generally consistent with the atmospheric increase but is more variable due to large-scale interannual variability of

oceanic Processes. IPCC (2013)
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Climate change: ocean acidification
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Climate change: ocean acidification

Fig. 3. Calcification response to changes in Q4 observed in
experiments and in nature. Experiments using Ca to manipulate
Q,rag and those reporting >80% mortality under elevated CO,
are excluded. Data are grouped as follows: (i) CO, invasion ex-
periments at ambient temperature [seven studies (4549, 52, 53),
red crosses], and CO, invasion experiments at elevated temperature
[three studies (46, 47, 53), orange crosses]. In all CO, invasion
experiments, corals and coral reef organisms were exposed to
treatment conditions for longer than 1 week. (ii) Non-CO, invasion
experiments using different combinations of acid and base to manip-
ulate Q. DIC, and pco;, [seven studies (44, 50, 51, 54, 82, 93, 94),
gray asterisks]. Periods of exposure vary from hours to years. (iii)
Field data from Gulf of Eilat (58) (green triangles) and Great
Bahamas Bank (43) (blue diamonds). The horizontal axis is scaled to
(Qarag — 1) rather than Q4 because the first-order saturation-state
model of (44) predicts that calcification is proportional to (Q,g— 1),
and this scaling facilitates comparing the model prediction (solid
line) with the empirical data (points). The range of Q,.4 conditions
for each experiment varied significantly, and, in several instances,
corals were exposed to saturation states significantly higher (and
lower) than those under which they grow naturally. Here, we set
(maximum Q5 — 1) in each experimental and field study at
100% and the calcification response is represented as percent of
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(Qara -1) as % of (max Qm -1) calcification recorded under the maximum Q condition. The dash-
: e dot green line is the fitted calcification model from (58).
Pandolfi et al. (2011)
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Climate change: ocean acidification
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Fig. 1. Photographs of O. patagonica. Scale bars indicate 2 mm. (A) Control colony. (B) Sea anemone—
like coral polyps following skeleton dissolution in low-pH conditions. (C) Solitary polyps reforming a
colony and calcifying after being transferred back to normal seawater following 12 months as soft-
bodied polyps in low-pH conditions. (D) Time series illustrating percent change (average + SE) in protein
per polyp (biomass) and total buoyant weight over 12 months in experimental (pH = 7.4) and control
(pH = 8.2) seawater (N = 20). A two-way analysis of variance (time x pH) revealed significant changes

(P < 0.001) between treatments over time. Fine & Tchernov (2007)
VRIJE . . . Prof. Dr.
ggjﬂ)\éggfnm Marine Ecology/Fisheries — Coral Reefs Marc Kochzius 57



Climate change: impact on coral reefs
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Climate change: aragonite saturation state
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Climate change: impact on resilience
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Fig. 2. Reduction in the resilience of Caribbean forereefs as coral growth
rate declines by 20%. Reef recovery is only feasible above or to the right of
the unstable equilibria (open squares). The “zone of reef recovery” (pink) is
therefore more restricted under reduced coral growth rate and reefs require

higher levels of grazing to exhibit recovery trajectories. (Hoegh-Guldberg et al. 2007)
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Climate change: impact on resilience
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Fig. 3. Ecological feedback processes on a coral reef showing pathways of
disturbance caused by climate change. Impact points associated with ocean
acidification (e.g., reduced reef rugosity, coralline algae) are indicated by the
blue arrows, and impact points from global warming (e.g., bleached and
dead corals) by the red arrows. Boxes joined by red arrows denote that the

.
settlement of individuals T

reduced connectivity

first factor has a negative (decreasing) influence on the box indicated. Green
arrows denote positive (increasing) relationships. Over time, the levels of
factors in hexagonal boxes will increase, whereas those in rectangular boxes
will decline. Boxes with dashed lines are amenable to local management
intervention.

(Hoegh-Guldberg et al. 2007)
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Reefs at risk: blast and poison fishing

MAP 3.1. GLOBAL OBSERVATIONS OF BLAST AND POISON FISHING

Vo

© T. Heeger

Y
X

IDRC

Areas of Observed Blast or Poison Fishing
Moderate . Severe

- @M Kochzius

Note: Blast and poison fishing is largely undertaken in Southeast Asia, the western Pacific, and eastern Africa. Areas of threat shown here are based on survey observations and expert opinion.
Source: WRI, 2011.

Burke et al. (2011)
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Reefs at risk: coral disease

@ Black-band disease @ Growth anomalies ® White plague ® White syndrome @ White-band disease @ Yellow band disease ® Other disease

Note: This map provides an indication of the broad patterns of coral disease, but is incomplete because many coral reef locations are unexplored, and not all observations of coral disease are reported.
“Other” includes skeletal eroding band, brown band, atramentous necrosis, trematodiasis, ulcerative white spots, and other syndromes that are poorly described.

Source: ReefBase Coral Disease data set and UNEP-WCMC Global Coral Disease database, observations of coral disease 1970-2010.

Burke et al. (2011)
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Reefs at risk: current status

REEFS AT RISK WORLDWIDE BY CATEGORYJREEFS AT RISK FROM INTEGRATED LOCAL
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Notes: Individual local threats are categorized as low, medium, and high. These threats are Note: Integrated local threats consist of the four local threats—overfishing and destructive
integrated to reflect cumulative stress on reefs. Reefs with multiple high individual threat fishing, marine pollution and damage, coastal development, and watershed-based pollution.
scores can reach the very high threat category, which only exists for integrated threats. The
fifth column, integrated local threats, reflects the four local threats combined. The right-most
column also includes thermal stress during the past ten years. This figure summarizes current
threats; future warming and acidification are not included. Burke et al. (2011)
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Reefs at risk: socioeconomic dependence

MAP ES-2. SOCIAL AND ECONOMIC DEPENDENCE ON CORAL REEFS
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Note: Reef dependence is based on reef-associated population, reef fisheries employment, nutritional dependence on fish and seafood, reef-associated export value, reef tourism, and shoreline protection
from reefs. Countries and territories are categorized according to quartiles.

Burke et al. (2011)
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Reefs at risk: marine protected areas (MPAs)

FIGURE ES-4. CORAL REEFS BY MARINE PROTECTED AREA
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Note: The global area of coral reefs is 250,000 sq km (which represents 100% on this chart),
of which 67,350 sq km (27%) is inside MPAs.

Burke et al. (2011)
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Reefs at risk: future projections
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