Meet the Team

Staff

The Lab’s Staff include a variety of members, including Academics (5), Technicians (4), PostDocs (2), PhDs (3) a secretary and Master students.

Find more about us:

Academics

Philippe Dubois (Head)

Bruno Danis

Chantal De Ridder

Isabelle George

Michel Jangoux

Technicians

Matthieu Bauwens

Philippe Pernet

Saloua M’Zoudi

Thierry Dupont

PostDocs

Antonio Agüera

Quentin Jossart

PhD Students

Aurélie Dery

Camille Moreau

Mishal Cohen

Secretary

Julie Vandewalle

Research at BIOMAR

Research

The “Marine Biology” (BIOMAR) team of ULB has a long experience in the research field of Antarctic invertebrates, in a range of topics including biochemistry, ecophysiology or impacts of Global Change on benthic ecosystems.

BIOMAR carries out its research on the bioecology of marine benthic invertebrates, with a special focus on echinoderms. Our expertise with this phylum dates back to 1969, when Prof. Michel Jangoux was first recruited under the direction of Prof. Jean Bouillon, a cnidarian specialist.

Since 1989, BIOMAR is closely associated to the marine biology laboratory of the Mons University (UMH), as both were under the supervision of Prof. Jangoux, forming the “Centre Interuniversitaire de Biologie Marine” (CIBIM).

BIOMAR focuses on various research themes, including:

Biodiversity Informatics

Ecophysiology

Form and Function

Global Change

Marine Biodiversity

Microbiology

Symbioses

New paper in Global Change Biology

Marie Collard is the lead author of a new publication on the resilience of Sea Urchins to near-future ocean acidification, which was just issued by Global Change Biology.  The paper is a contribution to the vERSO project, which the Marine Biology Lab is coordinating. Find out more one the paper here.

Abstract: Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans’ pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid–base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid–base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid–base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid–base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid–base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change.

Microbes, Diversity and Ecological Roles session at the SCAR OSC

You can register now for the Microbes, Diversity and Ecological Roles session at the SCAR Open Science Conference , which will be held in Auckland, New Zealand from 23 rd August to 3rd September 2014

Most, if not all, Antarctic ecosystems are home to microbes that can span the range from sparse to dense and low to high diversity assemblages. These organisms o<en harbor specialized capabilities to withstand the environmental extremes that the high latitudes of the Antarctic pose. This session welcomes contribu/ons to our understanding and appreciation of Antarctic microbial systems, exploring diversity and ecological roles, contributions to biogeochemical cycles, and interactions between organisms (symbiotic, predatory or parasitic) and ultimately how microbes come together to influence Antarctic systems.

The increased recognition of microbes in all domains of life inhabiting Antarctic ecosystems – and in some cases not only surviving, but thriving in these systems (e.g. aquatic, icy, soil, rock, subglacial, marine benthic or pelagic) is gaining traction largely due to increased scientific exploration of diverse environments paralleled with technologic improvements in molecular sciences (e.g. next generation sequencing and bioinformatics analyses), application of geobiological tools, and remote sensing of both environments and organisms. This session has been developed by AntEco and the International Union of Biological Sciences.

The session is convened by:

Prof. Alison Murray, DRI, USA

Prof. Nils Chr. Stenseth, University of Oslo, Norway

Dr. Ian Hawes, University of Canterbury, New Zealand

 

Abstract submission deadline: 14 February 2014

Download the flyer here: SCAR-OS_MicrobesSessionFlyer

Mission Portman: a short report…

Remediation poster

Poster explaining the ongoing remediation programs in the Bay Portman

A small team from the BIOMAR Lab set a research mission to the Bay of Portman, Spain. The team was composed of Philippe Pernet (technician), three master students (Valérie Rossez, Andrea Garvetto and Maxime Coupremanne) under the supervision of Bruno Danis. The team reached the Bay on October 16th, 2013 for a 10-day stay.

The Bay of Portman was chosen for its exceptional environmental characteristics, from a contamination standpoint. A conference was recently held on the subject, involving our colleagues Drs Maria Jose Martinez and Carmen Perez, both from the Research Group of Soil Pollution in the University of Murcia.

A series of sampling and measurement were carried out in the framework of the master students respective projects:

Valérie Rossez worked on  comparative acid-base physiology  in two species of sea urchins (Paracentrotus lividus and Arbacia lixula), investigating the relationship between this physiological parameters and the uptake of contaminants but the sea urchins

Paracentrotus lividus (image from Encyclopedia of life, www.eol.org)

 

Arbacia lixula

Arbacia lixula (picture from Encyclopedia of Life, www.eol.org)

Andrea Garvetto worked on microbial diversity, and took samples to investigate the link between the levels of contamination and microbial community structure in digestive pellets of two species of sea urchins (Paracentrotus lividus and Arbacia lixula), in various algae as well as in the seawater and sediments (various granulometries).

Maxime Coupremanne carried out a fine-scale mapping of the biodiversity and habitats of the Bay and its surroundings using underwater video transects using the lab’s ROV as well as videos shot by SCUBA divers.

Wally

Our ROV, Wally, in station S3, ready for deployment

Also, samples were taken for heavy metal levels analyses for each corresponding stations. The team was able to work in a total of 16 stations in the Bay, organised in a set of transects (from inside to outside the Bay as well as along the coast, following the main currents), and has come back to the Lab to process the samples. This pool of samples and video transects constitutes a unique benchmark to address potential future changes, for example in the mining activities of the Bay of Portman.

sampling

Sampling station in the Bay of Portman

New Website lifting off…

We’re excited to announce that we’ve been working on a new website for our Laboratory. The new website can be found on both the ULB (biomar.ulb.ac.be) and general (www.marinebiology.be) addresses. It uses a CMS (WordPress) which allows us to progressively deploy a dynamic, modular and interoperable website. We will progressively be plugging in content (information, news, publications, but also raw data, model outputs and maps) and implementing more modules. Stay tuned, and don’t hesitate to get in touch with us for collaborations, networking or with suggestions.

Available only through your browser…

Détroit de Bransfield (Bransfield Strait)

Nous avons réalisé les derniers traits d’AGT (AGT=Agassiz trawl ou chalut Agassiz) dans le Détroit de Bransfield, à l’ouest de la Péninsule antarctique. Nous y avons comparé trois stations, chacune comportant quatre sites de prélèvement, s’étageant entre 150 (plateaux) et 700 m de profondeur (canyons). Les prélèvements se sont donc succédés à un rythme soutenu ces dernières semaines. 

Trait de chalut dans le Détroit de Bransfield, 250m (Photo Chantal De Ridder, ULB)

De nombreuses espèces d’oursins ont été récoltées dans toutes les stations explorées (ce qui nous a ravi !); certains oursins ont pu être maintenus vivants à bord et observés dans un des laboratoires du bateau. Des échantillons ont été préparés pour des analyses isotopiques, moléculaires et morphométriques qui seront réalisées à Bruxelles et à Dijon (analyses de la composition en isotopes stables, analyses de la microflore bactérienne, analyses des complexes d’espèces). Philippe a parallèlement pu mesurer le métabolisme respiratoire ainsi que le métabolisme acide-base chez des oursins récoltés dans des environnements contrastés, en passant de longues heures dans un des laboratoires réfrigérés du bateau. Nos premières observations indiquent un effet marqué de l’englacement sur la biologie des oursins, et une relative ‘adaptabilité’ dans les différents environnements étudiés. Nous faisons route maintenant vers le Passage de Drake, une région ‘plus océanique’, très peu soumise à l’englacement et où les oursins disposent de ressources trophiques variées et abondantes durant toute l’année. Cette dernière série de prélèvements clôturera notre étude comparative des échinides issus d’environnements soumis à différentes conditions d’englacement.  Le Polarstern quittera l’Antarctique et prendra la direction de Punta Arenas le 14 mars prochain. Le retour est donc en vue. Ces deux mois en mer ont été productifs scientifiquement mais ils nous ont aussi permis de découvrir les abords d’un continent hors du commun. Le brise-glace Polarstern, en navigant ‘sur la banquise’ (‘dans du solide’ !), nous a offert des moments étonnants à la rencontre de paysages magnifiques, déclinant toutes les gammes de blanc. Enfin, un des aspects sympathiques des expéditions en mer est le fait de travailler simultanément avec des chercheurs d’origines très diverses, et de confronter nos idées, nos méthodes, et … nos cultures ! Chantal, Philippe et Bruno