The SCAR Biogeographic Atlas of the Southern Ocean

_77118968_photo-48

The SCAR Biogeographic Atlas of the Southern Ocean has been officially launched at the SCAR Open Science Conference in Auckland, New Zealand. The Marine Biology Lab of the ULB has been heavily involved in the effort, mainly in the edition, data mobilization and writing of the book.

You can download the first chapter of the Atlas as a preview.

Below is the press release, as prepared by the British Antarctic Survey.

The new Atlas, providing the most thorough audit of marine life in the Southern Ocean, is published this week by the Scientific Committee on Antarctic Research (SCAR). Leading marine biologists and oceanographers from all over the world spent the last four years compiling everything they know about ocean species from microbes to whales.

It’s the first time that such an effort has been undertaken since 1969 when the American Society of Geography published its Antarctic Map Folio Series.

In an unprecedented international collaboration 147 scientists from 91 institutions across 22 countries (Australia, Belgium, Brazil, Canada, Chile, Denmark, France, Germany, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Poland, Portugal, Russia, South Africa, Spain, Switzerland, the UK and the USA) combined their expertise and knowledge to produce the new Biogeographic Atlas of the Southern Ocean.

More than 9000 species are recorded, ranging from microbes to whales. Hundreds of thousands of records show the extent of scientific knowledge on the distribution of life in the Southern Ocean. In 66 chapters, the scientists examine the evolution, physical environment, genetics and possible impact of climate change on marine organisms in the region.

Chief editor, Claude De Broyer, of the Royal Belgian Institute of Natural Sciences, said:

“This is the first time that all the records of the unique Antarctic marine biodiversity, from the very beginnings of Antarctic exploration in the days of Captain Cook, have been compiled, analysed and mapped by the scientific community. It has resulted in a comprehensive atlas and an accessible database of useful information on the conservation of Antarctic marine life.”

The data, and expert opinions, in the Atlas will help inform conservation policy, including the debate over whether or not to establish marine protected areas in the open ocean. Sophisticated environmental models coupled with existing species distribution data provide a valuable outlook on the possible future distribution of key species as they adapt to climate change.

New advances in genetics have shed light on some of the best known species from the Antarctic sea floor. The giant isopod crustacean Glyptonotus antarcticus is one of those. The animal lives on the edge of the continent at depths of up to 600 metres. Previously considered to be a single species with a circumpolar distribution, molecular barcoding suggests it may, in reality, be a group with up to eleven species inhabiting much smaller geographic regions.

Author, and editor, Huw Griffiths, of the British Antarctic Survey, said:

“The book is unique and contains an amazing collection of information and photos. It’s been an enormous international effort and will serve as a legacy to the dedicated team of scientists who have contributed to it. The Atlas is a must-read for anyone interested in the animals living at the end of the Earth.”

The Atlas contains around 100 colour photos and 800 maps. It will be launched at the SCAR 2014 Open Science Conference in Auckland, New Zealand on Monday 25th August.

BIOMAR Lab hosting dBASO workshop

atlas_home

This week, we will be hosting an international workshop to scope out the new dynamic Biogeographic Atlas of the Southern Ocean (dBASO), a followup project of SCAR’s Biogeographic Atlas of the Southern Ocean.

At the end of five years of extensive biodiversity exploration and assessment by CAML and the OBIS Antarctic Node (the SCAR Marine Biodiversity Information Network), a new initiative, the multi-authored “SCAR Biogeographic Atlas of the Southern Ocean”, has been established under the aegis of the Scientific Committee on Antarctic Research (SCAR) to provide an up-to-date synthesis of Antarctic and sub-Antarctic biogeographic knowledge and to make available a new comprehensive online resource for visualisation, analysis and modelling of species distribution. It will constitute a major scientific output of CAML and SCAR-MarBIN as well as being a significant legacy of CoML and the International Polar Year to fulfill the needs of biogeographic information for science, conservation, monitoring and sustainable management of the changing Southern Ocean. It will be of direct benefit to the Antarctic Treaty and associated bodies such as the Convention for the Conservation of Antarctic Marine Living Resources.

Ten participants from 5 countries (Australia, France, Italy, United Kingdom, Belgium) will be working on the initial development steps to make dBASO go live.

 

 

New Website lifting off…

We’re excited to announce that we’ve been working on a new website for our Laboratory. The new website can be found on both the ULB (biomar.ulb.ac.be) and general (www.marinebiology.be) addresses. It uses a CMS (WordPress) which allows us to progressively deploy a dynamic, modular and interoperable website. We will progressively be plugging in content (information, news, publications, but also raw data, model outputs and maps) and implementing more modules. Stay tuned, and don’t hesitate to get in touch with us for collaborations, networking or with suggestions.

Available only through your browser…

OpenROV étape 6: assemblage du boitier étanche

Cette partie de l’assemblage se fait également sans difficulté particulière. Elle consiste à coller entre eux des disques concentriques de diamètres différents, ce qui permettra d’intercaler des o-ring qui assureront l’étanchéité. Les orifices latéraux servent d’un part de passe-cable (et seront étanchéifiés à l’aide d’une pâte époxy) et d’autre part d’évent, pour éviter une surpression à l’intérieur du cylindre.

Vue générale du boitier d’étanchéité. Photo: Bruno Danis
Les deux bouchons du boitier, formés de cercles de différents diamètres. Photo: Bruno Danis
Montage à blanc, tout s’ajuste parfaitement. Photo: Bruno Danis
Le boitier d’étanchéité, la webcam est placée. Photo: Bruno Danis

OpenROV étape 5: assemblage des blocs batterie

Cette étape consiste à fabriquer deux tubes qui vont avoir pour fonction d’accueillir les 8 piles (LR01), qui vont alimenter le ROV (autonomie prévue, environ une heure dans une eau tempérée). Les blocs d’alimentation servent également de lest, et permettent au ROV de conserver son équilibre dans l’eau.
Nous avons fabriqué les blocs à partir de tubes PVC (32mm), bouchés de part et d’autre par des pieds de meubles détournés. La connectique consiste simplement en des contacteurs de piles récupérés d’un lecteur de CD (hors service), et du câble d’alimentation soudé à ces contacteurs (bouton et ressort), qui viendra se brancher au niveau du Cape. L’étanchéité est assurée par de l’époxy, qui est bourré au niveau des pieds en caoutchouc.

Les blocs d’alimentation terminés. Photo: Bruno Danis
Détail de l’un des bouchons et d’un contacteur, collé sur une rondelle d’acrylique. Photo: Bruno Danis
Les blocs sont fixés sur la coque du ROV, à l’aide de colsons adaptés. Photo: Bruno Danis

OpenROV étape 4: montage du châssis pour l’électronique (e-chassis)

Cette étape consiste à assembler une autre partie de la structure du OpenROV: le e-chassis. Cet élément va accueillir les éléments électroniques embarqués du ROV, et venir se placer dans un cylindre étanche, qui sera placé à l’avant du ROV. L’e-chassis peut tourner dans ce cylindre, ce qui permet d’orienter la caméra embarquée et les rampes de LEDs.
Les éléments électroniques embarqués comprennent:

  1. les variateurs de vitesse
  2. l’ordinateur de bord (Beaglebone)
  3. l’interface entre le Beaglebone et les autres éléments
  4. un servo
  5. une webcam HD
  6. deux rampes de LED

Voici quelques photos de cet assemblage:

Pièces pour l’e-chassis, avant montage. Photo: Bruno Danis
Une partie de l’e-chassis est monté. Photo: Bruno Danis
Fixation de la webcam HD, à l’aide de colsons. Photo: Bruno Danis
Fixation des rampes de LEDs à l’aide de colle epoxy. Photo: Bruno Danis
L’e-chassis terminé, on voit l’encoche pour l’objectif de la caméra. Photo: Bruno Danis

OpenROV étape 3: montage du châssis pour la propulsion

Le montage du châssis accueillant le système de propulsion (trois moteurs brushless, et hélices issues de turbines d’avion à réaction télécommandé) se faut sans difficulté particulière, en collant les éléments découpés au laser avec une très grande précision.

Collage de la partie centrale du châssis. Photo: Bruno Danis
Les moteurs viendront se fixer sur cette partie, dans les emplacements prévus. Photo: Bruno Danis
La poignée du ROV
Le châssis est prêt. Le cercle central servira à la propulsion verticale du ROV. Photo: Bruno Danis
Autre vue sur le châssis. Photo: Bruno Danis
Les moteurs et les hélices. Photo: Bruno Danis
Vue rapprochée sur l’un des moteurs. Photo: Bruno Danis

OpenROV étape 2: pliage de la coque externe

La structure générale de l’OpenROV se compose de trois parties: la coques externe (qui doit être pliée en forme), le châssis supportant le système de propulsion, et le châssis pour l’électronique (e-chassis).
Nous avons commencé par la coque externe, qu’il a fallu plier (à un peu plus de 90°) et dans laquelle viendra se “clipser” le reste de la structure du ROV.
Le pliage proprement dit s’est fait à l’aide d’un décapeur thermique (2-3 minutes d’exposition à puissance intermédiaire suffisent).
Les photos ci-dessous reprennent les principales phases du montage:

préparation d’une structure en bois permettant de canaliser la chaleur du décapeur thermique. photo: Bruno Danis
premier essai à blanc. photo: Bruno Danis
la stucture à plier. photo: Bruno Danis
préparation du premier pli. photo: Bruno Danis
le premier pli est réussi! photo: Bruno Danis
la coque externe, les deux plis sont faits. photo: Bruno Danis
coque externe terminée. photo: Bruno Danis

OpenROV by OpenROV is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

OpenROV étape 1: commande des fournitures

La première étape dans le projet OpenROV est bien sûr de commander toutes les fournitures nécessaires. Cette partie a demandé plus de travail que prévu, les fournisseurs habituels étant basés aux USA. La structure du submersible étant conçue de manière extrêmement précise, il nous a fallu beaucoup d’efforts pour rassembler toutes les pièces du puzzle. Au jour d’écrire ces lignes, certaines pièces vitales sont encore en route vers le Laboratoire. Qu’à cela ne tienne, nous avons reçus les éléments principaux du châssis, découpés au jet d’eau.

Les éléments structuraux du ROV. Photo: Bruno Danis

Dès que possible, nous partagerons la liste des éléments indispensables au montage d’un OpenROV, adapté au marché Belge, avec des estimations de délais de livraison, et des remarques utiles par rapports aux éléments qui demandent une attention particulière.

OpenROV by OpenROV is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.