Category: Uncategorized
Meet the Team
Staff
The Lab’s Staff include a variety of members, including Academics, Technicians, PostDocs, PhDs a secretary and Master students.
Find more about us by following the links below, or by visiting the lab’s page on Researchgate:
Academics
Philippe Dubois (Head)
Technicians
PhD Students
Postdoc students
Secretary
Research at BIOMAR
Research
The “Marine Biology” (BIOMAR) team of ULB has a long experience in the research field of Antarctic invertebrates, in a range of topics including biochemistry, ecophysiology or impacts of Global Change on benthic ecosystems.
The BIOMAR Marine Biology Lab at ULB carries out its research on the bioecology of marine benthic invertebrates, with a special focus on echinoderms. BIOMAR has accumulated over 40 years of experience in echinoderms biology. Our expertise with this phylum dates back to 1969, when Prof. Michel Jangoux was first recruited under the direction of Prof. Jean Bouillon, a cnidarian specialist.
Since 1989, BIOMAR is closely associated to the marine biology laboratory of the Mons University (UMH), as both were under the supervision of Prof. Jangoux, forming the “Centre Interuniversitaire de Biologie Marine” (CIBIM).
Take a look at our Projects and Publications pages for more details on current research activities.
New paper in Global Change Biology
Marie Collard is the lead author of a new publication on the resilience of Sea Urchins to near-future ocean acidification, which was just issued by Global Change Biology. The paper is a contribution to the vERSO project, which the Marine Biology Lab is coordinating. Find out more one the paper here.
Abstract: Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans’ pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid–base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid–base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid–base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid–base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid–base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change.
Microbes, Diversity and Ecological Roles session at the SCAR OSC
You can register now for the Microbes, Diversity and Ecological Roles session at the SCAR Open Science Conference , which will be held in Auckland, New Zealand from 23 rd August to 3rd September 2014
Most, if not all, Antarctic ecosystems are home to microbes that can span the range from sparse to dense and low to high diversity assemblages. These organisms o<en harbor specialized capabilities to withstand the environmental extremes that the high latitudes of the Antarctic pose. This session welcomes contribu/ons to our understanding and appreciation of Antarctic microbial systems, exploring diversity and ecological roles, contributions to biogeochemical cycles, and interactions between organisms (symbiotic, predatory or parasitic) and ultimately how microbes come together to influence Antarctic systems.
The increased recognition of microbes in all domains of life inhabiting Antarctic ecosystems – and in some cases not only surviving, but thriving in these systems (e.g. aquatic, icy, soil, rock, subglacial, marine benthic or pelagic) is gaining traction largely due to increased scientific exploration of diverse environments paralleled with technologic improvements in molecular sciences (e.g. next generation sequencing and bioinformatics analyses), application of geobiological tools, and remote sensing of both environments and organisms. This session has been developed by AntEco and the International Union of Biological Sciences.
The session is convened by:
Prof. Alison Murray, DRI, USA
Prof. Nils Chr. Stenseth, University of Oslo, Norway
Dr. Ian Hawes, University of Canterbury, New Zealand
Abstract submission deadline: 14 February 2014
Download the flyer here: SCAR-OS_MicrobesSessionFlyer
Mission Portman: a short report…
A small team from the BIOMAR Lab set a research mission to the Bay of Portman, Spain. The team was composed of Philippe Pernet (technician), three master students (Valérie Rossez, Andrea Garvetto and Maxime Coupremanne) under the supervision of Bruno Danis. The team reached the Bay on October 16th, 2013 for a 10-day stay.
The Bay of Portman was chosen for its exceptional environmental characteristics, from a contamination standpoint. A conference was recently held on the subject, involving our colleagues Drs Maria Jose Martinez and Carmen Perez, both from the Research Group of Soil Pollution in the University of Murcia.
A series of sampling and measurement were carried out in the framework of the master students respective projects:
Valérie Rossez worked on comparative acid-base physiology in two species of sea urchins (Paracentrotus lividus and Arbacia lixula), investigating the relationship between this physiological parameters and the uptake of contaminants but the sea urchins
Andrea Garvetto worked on microbial diversity, and took samples to investigate the link between the levels of contamination and microbial community structure in digestive pellets of two species of sea urchins (Paracentrotus lividus and Arbacia lixula), in various algae as well as in the seawater and sediments (various granulometries).
Maxime Coupremanne carried out a fine-scale mapping of the biodiversity and habitats of the Bay and its surroundings using underwater video transects using the lab’s ROV as well as videos shot by SCUBA divers.
Also, samples were taken for heavy metal levels analyses for each corresponding stations. The team was able to work in a total of 16 stations in the Bay, organised in a set of transects (from inside to outside the Bay as well as along the coast, following the main currents), and has come back to the Lab to process the samples. This pool of samples and video transects constitutes a unique benchmark to address potential future changes, for example in the mining activities of the Bay of Portman.
New Website lifting off…
We’re excited to announce that we’ve been working on a new website for our Laboratory. The new website can be found on both the ULB (biomar.ulb.ac.be) and general (www.marinebiology.be) addresses. It uses a CMS (WordPress) which allows us to progressively deploy a dynamic, modular and interoperable website. We will progressively be plugging in content (information, news, publications, but also raw data, model outputs and maps) and implementing more modules. Stay tuned, and don’t hesitate to get in touch with us for collaborations, networking or with suggestions.
Available only through your browser…
Détroit de Bransfield (Bransfield Strait)
Nous avons réalisé les derniers traits d’AGT (AGT=Agassiz trawl ou chalut Agassiz) dans le Détroit de Bransfield, à l’ouest de la Péninsule antarctique. Nous y avons comparé trois stations, chacune comportant quatre sites de prélèvement, s’étageant entre 150 (plateaux) et 700 m de profondeur (canyons). Les prélèvements se sont donc succédés à un rythme soutenu ces dernières semaines.
Trait de chalut dans le Détroit de Bransfield, 250m (Photo Chantal De Ridder, ULB)
|
De nombreuses espèces d’oursins ont été récoltées dans toutes les stations explorées (ce qui nous a ravi !); certains oursins ont pu être maintenus vivants à bord et observés dans un des laboratoires du bateau. Des échantillons ont été préparés pour des analyses isotopiques, moléculaires et morphométriques qui seront réalisées à Bruxelles et à Dijon (analyses de la composition en isotopes stables, analyses de la microflore bactérienne, analyses des complexes d’espèces). Philippe a parallèlement pu mesurer le métabolisme respiratoire ainsi que le métabolisme acide-base chez des oursins récoltés dans des environnements contrastés, en passant de longues heures dans un des laboratoires réfrigérés du bateau. Nos premières observations indiquent un effet marqué de l’englacement sur la biologie des oursins, et une relative ‘adaptabilité’ dans les différents environnements étudiés. Nous faisons route maintenant vers le Passage de Drake, une région ‘plus océanique’, très peu soumise à l’englacement et où les oursins disposent de ressources trophiques variées et abondantes durant toute l’année. Cette dernière série de prélèvements clôturera notre étude comparative des échinides issus d’environnements soumis à différentes conditions d’englacement. Le Polarstern quittera l’Antarctique et prendra la direction de Punta Arenas le 14 mars prochain. Le retour est donc en vue. Ces deux mois en mer ont été productifs scientifiquement mais ils nous ont aussi permis de découvrir les abords d’un continent hors du commun. Le brise-glace Polarstern, en navigant ‘sur la banquise’ (‘dans du solide’ !), nous a offert des moments étonnants à la rencontre de paysages magnifiques, déclinant toutes les gammes de blanc. Enfin, un des aspects sympathiques des expéditions en mer est le fait de travailler simultanément avec des chercheurs d’origines très diverses, et de confronter nos idées, nos méthodes, et … nos cultures ! Chantal, Philippe et Bruno
Nouvelles de la Mer de Weddell
Nous naviguons actuellement dans une zone particulièrement englacée de la Mer de Weddell, les vents dominants et les courants rabattant la glace vers les côtes de la Péninsule antarctique. Le Polarstern doit régulièrement se frayer un passage dans la banquise. En eaux plus libres, nous croisons de larges fragments de banquise (glace de mer) et des icebergs imposants (fragments de glaciers largués aux marges du continent Antarctique). Passagers de ces îles flottantes, les phoques et les manchots, nous observent surpris par ce gros brise-glace.
photo: Katrin Wheatley, EG-BAMM |
Notre travail consistant à comparer la biologie du benthos de la plateforme continentale dans des zones soumises à des contraintes d’englacement différentes, plusieurs sites de récolte ont été sélectionnés. Chaque site exploré (“core station”) comporte une station profonde (ca. 400 – 500 m de profondeur) et une station peu profonde (ca. 100 m de profondeur), ce qui nous informe sur les fluctuations des communautés benthiques en fonction de la profondeur.
photo: Julian Gutt, AWI
|
Jusqu’à présent, nous avons exploré une zone s’étendant depuis le nord de l’île de Joinville jusqu’au sud de l’île de Dundee. Les sites échantillonnés indiquent une diversité faunistique fascinante et des communautés d’organismes très distinctes, généralement dominées par des groupes trophiques particuliers. Les échinodermes et plus particulièrement les échinides (oursins) en sont des membres incontournables, ils sont présents dans quasi toutes les communautés examinées! Un de nos objectifs est de cerner leur comportement alimentaire et leur métabolisme dans des conditions de milieu contrastées, et de caractériser leur degré de sensibilité face aux fluctuations des facteurs de milieu. Ces derniers sont examinés par d’autres équipes de biologistes à bord qui étudient les caractéristiques physico-chimiques de l’eau de fond (T°, salinité, teneur en oxygène, concentration en chlorophylle a) et celles des sédiments (granulométrie, matière organique, concentration en chlorophylle a). La mission étant multidisciplinaire, biologistes et océanographes se côtoient, ce qui est particulièrement stimulant. En pistant les masses d’eau pour caractériser leurs mouvements, les océanographes apportent un supplément d’information sur les courants qui circulent dans nos sites d’échantillonnage.
photo: Armin Rose, DZMB
|
Actuellement, l’équipe d’océanographes et celle qui étudie les populations de krill réalisent un dernier transect en Mer de Weddell. Ensuite, si les conditions d’englacement le permettent, nous nous dirigerons plus au sud, au voisinage de Larsen A, pour y réaliser une dernière série de prélvements dans une zone fort soumise à l’englacement avant de quitter la Mer de Weddell pour le détroit de Bransfield, où la formation de glace est plus saisonnière.
Chantal, Philippe et Bruno
Une semaine de calme…
Chers lecteurs,
Le Polarstern est actuellement en eaux libres au nord de l’île de l’Eléphant. Cette semaine et une partie de la suivante sont consacrées à des traits de plancton destinés à l’étude de la dynamique de population du krill et à la prise d’échantillons d’eau permettant de décrire et suivre les différentes masses d’eau, en particulier l’eau froide profonde issue de la mer de Weddell. Nous en profitons pour peaufiner notre installation, traiter les premières données obtenues et nous consacrer aux « devoirs » que nous avons emportés (écriture et correction d’articles scientifiques, lecture d’articles etc.).
J’en profite pour vous parler d’un outil océanographique très employé: la « rosette CTD ». Il s’agit d’une série de cylindres en PVC, ouverts à leurs deux extrémités, (« bouteilles Niskin » en jargon océanographique) disposés en cercle autour de capteurs.
Cet ensemble est immergé et les capteurs permettent de suivre, en temps réel, plusieurs paramètres : la salinité mesurée par conductivimétrie (C), la température (T) et la profondeur (« depth » D). Des capteurs additionnels permettent de mesurer la concentration en oxygène et en chlorophylle A (mesure de la quantité d’algues unicellulaires en suspension dans la colonne d’eau) ou la quantité de lumière disponible pour les organismes photosynthétiques. Des signaux électriques peuvent être envoyés et permettent de fermer les bouteilles à la profondeur voulue et d’ainsi obtenir des échantillons d’eau pour d’autres analyses. Le fait que les bouteilles soient ouvertes à leurs deux extrémités assure le libre passage de l’eau de mer tant que la bouteille n’est pas fermée.
Cet outil nous permet de connaître exactement les conditions auxquelles sont soumis les organismes benthiques que nous étudions. J’utilise en outre les échantillons d’eau pour mesurer le pH et l’alcalinité («capacité tampon ») de l’eau dans laquelle baignent les oursins.
Philippe, Bruno, Chantal