Un coup d’oeil a la biodiversite des fonds marins Antarctiques

Que faisons-nous?

Nous sommes à bord du JCR, le James Clark Ross, un navire de recherche océanographique Britannique, qui doit son nom à un explorateur polaire Anglais.

JCR

Le James Clark Ross, a Signy Island. Photo: Bruno Danis

Le but de notre mission est de faire un inventaire, une liste, de tous les animaux qui vivent au fond de la mer (on les appelle les animaux benthiques), dans la région des Orcades du Sud. Ces îles se trouvent entre l’Amérique du Sud et la Péninsule Antarctique, et nous pensons que leur biodiversité doit être protégée. Pour cela, il est important de répertorier tous les animaux qui s’y trouvent (et beaucoup n’ont pas encore été décris), avec comme idée de pouvoir revenir plus tard pour un nouvel inventaire, qui permettra de déceler des changements dûs aux changements de l’environnement.

Comment faisons-nous?

Nous sommes dans une région qui a été relativement peu explorée. La seule manière d’inventorier les animaux qui nous intéresse est de les remonter à la surface. Nous utilisons pour cela des engins semblables à ceux qui sont utilisés par les pêcheurs, mais beaucoup plus petits, pour éviter d’abîmer les fonds. Nous utilisons notamment un AGT (Agassiz Trawl – Chalut Agassiz, du nom de son inventeur) et un traîneau EBS (Epibenthic sledge), qui permet de récolter les animaux qui sont près du fond. Avant de lancer les engins de récolte, nous “scannons” le fond, à l’aide d’un SWATH (qui permet d’avoir une image 3D du fond, très précise), qui fonctionne sur le principe de l’écholocalisation, comme les dauphins ou les chauve-souris… Nous utilisons ensuite une caméra benthique, qui nous permet de prendre de belles photos du fond. Une fois certains que les conditions sont réunies, nous déployons les engins depuis le pont arrière, et déroulons les cables pour atteindre des profondeurs de 500, 750, 1000, 1500 et 2000 m.

Swath3-300x233

Capture d’ecran du SWATH en action. Les couleurs sont proportionnelles a la profondeur (bleu: plus profond; rouge: moins profond). Photo: Louise Allcock.

Nous remontons ensuite les engins et trions et identifions tous les animaux, ce qui représente un travail très intense, que nous réalisons en équipe.

AGT

Lancement du chalut Agassiz depuis le pont arriere du JCR. Photo: Bruno Danis

Tri des echantillons

Une fois a bord, les echantillons sont tries dans le “WetLab”. Photo: Richard Turner

Qu’avons nous trouvé jusqu’ici?

Nous sommes à la moitié de l’expédition, et les différents endroits où nous avons travaillé (que l’on appelle des stations) montrent une diversité très différente. Certaines stations sont relativement pauvres en animaux, mais d’autres sont très riches, et nous avons probablement déjà récolté un nombre important de nouvelles espèces! Ce que nous accumulons comme information devra nous permettre de bien choisir les endroits qui doivent être protégés.

Biodiversity

Quelques animaux recoltes au cours de la campagne. Photos: Claudio Ghiglione, Camille Moreau, Helena Wiklund, Cath Waller

 

Pour en savoir plus… suivez le hashtag #SoAntEco sur Twitter

 

The SCAR Biogeographic Atlas of the Southern Ocean

_77118968_photo-48

The SCAR Biogeographic Atlas of the Southern Ocean has been officially launched at the SCAR Open Science Conference in Auckland, New Zealand. The Marine Biology Lab of the ULB has been heavily involved in the effort, mainly in the edition, data mobilization and writing of the book.

You can download the first chapter of the Atlas as a preview.

Below is the press release, as prepared by the British Antarctic Survey.

The new Atlas, providing the most thorough audit of marine life in the Southern Ocean, is published this week by the Scientific Committee on Antarctic Research (SCAR). Leading marine biologists and oceanographers from all over the world spent the last four years compiling everything they know about ocean species from microbes to whales.

It’s the first time that such an effort has been undertaken since 1969 when the American Society of Geography published its Antarctic Map Folio Series.

In an unprecedented international collaboration 147 scientists from 91 institutions across 22 countries (Australia, Belgium, Brazil, Canada, Chile, Denmark, France, Germany, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Poland, Portugal, Russia, South Africa, Spain, Switzerland, the UK and the USA) combined their expertise and knowledge to produce the new Biogeographic Atlas of the Southern Ocean.

More than 9000 species are recorded, ranging from microbes to whales. Hundreds of thousands of records show the extent of scientific knowledge on the distribution of life in the Southern Ocean. In 66 chapters, the scientists examine the evolution, physical environment, genetics and possible impact of climate change on marine organisms in the region.

Chief editor, Claude De Broyer, of the Royal Belgian Institute of Natural Sciences, said:

“This is the first time that all the records of the unique Antarctic marine biodiversity, from the very beginnings of Antarctic exploration in the days of Captain Cook, have been compiled, analysed and mapped by the scientific community. It has resulted in a comprehensive atlas and an accessible database of useful information on the conservation of Antarctic marine life.”

The data, and expert opinions, in the Atlas will help inform conservation policy, including the debate over whether or not to establish marine protected areas in the open ocean. Sophisticated environmental models coupled with existing species distribution data provide a valuable outlook on the possible future distribution of key species as they adapt to climate change.

New advances in genetics have shed light on some of the best known species from the Antarctic sea floor. The giant isopod crustacean Glyptonotus antarcticus is one of those. The animal lives on the edge of the continent at depths of up to 600 metres. Previously considered to be a single species with a circumpolar distribution, molecular barcoding suggests it may, in reality, be a group with up to eleven species inhabiting much smaller geographic regions.

Author, and editor, Huw Griffiths, of the British Antarctic Survey, said:

“The book is unique and contains an amazing collection of information and photos. It’s been an enormous international effort and will serve as a legacy to the dedicated team of scientists who have contributed to it. The Atlas is a must-read for anyone interested in the animals living at the end of the Earth.”

The Atlas contains around 100 colour photos and 800 maps. It will be launched at the SCAR 2014 Open Science Conference in Auckland, New Zealand on Monday 25th August.

Microbes, Diversity and Ecological Roles session at the SCAR OSC

You can register now for the Microbes, Diversity and Ecological Roles session at the SCAR Open Science Conference , which will be held in Auckland, New Zealand from 23 rd August to 3rd September 2014

Most, if not all, Antarctic ecosystems are home to microbes that can span the range from sparse to dense and low to high diversity assemblages. These organisms o<en harbor specialized capabilities to withstand the environmental extremes that the high latitudes of the Antarctic pose. This session welcomes contribu/ons to our understanding and appreciation of Antarctic microbial systems, exploring diversity and ecological roles, contributions to biogeochemical cycles, and interactions between organisms (symbiotic, predatory or parasitic) and ultimately how microbes come together to influence Antarctic systems.

The increased recognition of microbes in all domains of life inhabiting Antarctic ecosystems – and in some cases not only surviving, but thriving in these systems (e.g. aquatic, icy, soil, rock, subglacial, marine benthic or pelagic) is gaining traction largely due to increased scientific exploration of diverse environments paralleled with technologic improvements in molecular sciences (e.g. next generation sequencing and bioinformatics analyses), application of geobiological tools, and remote sensing of both environments and organisms. This session has been developed by AntEco and the International Union of Biological Sciences.

The session is convened by:

Prof. Alison Murray, DRI, USA

Prof. Nils Chr. Stenseth, University of Oslo, Norway

Dr. Ian Hawes, University of Canterbury, New Zealand

 

Abstract submission deadline: 14 February 2014

Download the flyer here: SCAR-OS_MicrobesSessionFlyer

OpenROV étape 6: assemblage du boitier étanche

Cette partie de l’assemblage se fait également sans difficulté particulière. Elle consiste à coller entre eux des disques concentriques de diamètres différents, ce qui permettra d’intercaler des o-ring qui assureront l’étanchéité. Les orifices latéraux servent d’un part de passe-cable (et seront étanchéifiés à l’aide d’une pâte époxy) et d’autre part d’évent, pour éviter une surpression à l’intérieur du cylindre.

Vue générale du boitier d’étanchéité. Photo: Bruno Danis
Les deux bouchons du boitier, formés de cercles de différents diamètres. Photo: Bruno Danis
Montage à blanc, tout s’ajuste parfaitement. Photo: Bruno Danis
Le boitier d’étanchéité, la webcam est placée. Photo: Bruno Danis

OpenROV étape 5: assemblage des blocs batterie

Cette étape consiste à fabriquer deux tubes qui vont avoir pour fonction d’accueillir les 8 piles (LR01), qui vont alimenter le ROV (autonomie prévue, environ une heure dans une eau tempérée). Les blocs d’alimentation servent également de lest, et permettent au ROV de conserver son équilibre dans l’eau.
Nous avons fabriqué les blocs à partir de tubes PVC (32mm), bouchés de part et d’autre par des pieds de meubles détournés. La connectique consiste simplement en des contacteurs de piles récupérés d’un lecteur de CD (hors service), et du câble d’alimentation soudé à ces contacteurs (bouton et ressort), qui viendra se brancher au niveau du Cape. L’étanchéité est assurée par de l’époxy, qui est bourré au niveau des pieds en caoutchouc.

Les blocs d’alimentation terminés. Photo: Bruno Danis
Détail de l’un des bouchons et d’un contacteur, collé sur une rondelle d’acrylique. Photo: Bruno Danis
Les blocs sont fixés sur la coque du ROV, à l’aide de colsons adaptés. Photo: Bruno Danis

OpenROV étape 4: montage du châssis pour l’électronique (e-chassis)

Cette étape consiste à assembler une autre partie de la structure du OpenROV: le e-chassis. Cet élément va accueillir les éléments électroniques embarqués du ROV, et venir se placer dans un cylindre étanche, qui sera placé à l’avant du ROV. L’e-chassis peut tourner dans ce cylindre, ce qui permet d’orienter la caméra embarquée et les rampes de LEDs.
Les éléments électroniques embarqués comprennent:

  1. les variateurs de vitesse
  2. l’ordinateur de bord (Beaglebone)
  3. l’interface entre le Beaglebone et les autres éléments
  4. un servo
  5. une webcam HD
  6. deux rampes de LED

Voici quelques photos de cet assemblage:

Pièces pour l’e-chassis, avant montage. Photo: Bruno Danis
Une partie de l’e-chassis est monté. Photo: Bruno Danis
Fixation de la webcam HD, à l’aide de colsons. Photo: Bruno Danis
Fixation des rampes de LEDs à l’aide de colle epoxy. Photo: Bruno Danis
L’e-chassis terminé, on voit l’encoche pour l’objectif de la caméra. Photo: Bruno Danis

OpenROV étape 3: montage du châssis pour la propulsion

Le montage du châssis accueillant le système de propulsion (trois moteurs brushless, et hélices issues de turbines d’avion à réaction télécommandé) se faut sans difficulté particulière, en collant les éléments découpés au laser avec une très grande précision.

Collage de la partie centrale du châssis. Photo: Bruno Danis
Les moteurs viendront se fixer sur cette partie, dans les emplacements prévus. Photo: Bruno Danis
La poignée du ROV
Le châssis est prêt. Le cercle central servira à la propulsion verticale du ROV. Photo: Bruno Danis
Autre vue sur le châssis. Photo: Bruno Danis
Les moteurs et les hélices. Photo: Bruno Danis
Vue rapprochée sur l’un des moteurs. Photo: Bruno Danis

OpenROV étape 2: pliage de la coque externe

La structure générale de l’OpenROV se compose de trois parties: la coques externe (qui doit être pliée en forme), le châssis supportant le système de propulsion, et le châssis pour l’électronique (e-chassis).
Nous avons commencé par la coque externe, qu’il a fallu plier (à un peu plus de 90°) et dans laquelle viendra se “clipser” le reste de la structure du ROV.
Le pliage proprement dit s’est fait à l’aide d’un décapeur thermique (2-3 minutes d’exposition à puissance intermédiaire suffisent).
Les photos ci-dessous reprennent les principales phases du montage:

préparation d’une structure en bois permettant de canaliser la chaleur du décapeur thermique. photo: Bruno Danis
premier essai à blanc. photo: Bruno Danis
la stucture à plier. photo: Bruno Danis
préparation du premier pli. photo: Bruno Danis
le premier pli est réussi! photo: Bruno Danis
la coque externe, les deux plis sont faits. photo: Bruno Danis
coque externe terminée. photo: Bruno Danis

OpenROV by OpenROV is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

OpenROV étape 1: commande des fournitures

La première étape dans le projet OpenROV est bien sûr de commander toutes les fournitures nécessaires. Cette partie a demandé plus de travail que prévu, les fournisseurs habituels étant basés aux USA. La structure du submersible étant conçue de manière extrêmement précise, il nous a fallu beaucoup d’efforts pour rassembler toutes les pièces du puzzle. Au jour d’écrire ces lignes, certaines pièces vitales sont encore en route vers le Laboratoire. Qu’à cela ne tienne, nous avons reçus les éléments principaux du châssis, découpés au jet d’eau.

Les éléments structuraux du ROV. Photo: Bruno Danis

Dès que possible, nous partagerons la liste des éléments indispensables au montage d’un OpenROV, adapté au marché Belge, avec des estimations de délais de livraison, et des remarques utiles par rapports aux éléments qui demandent une attention particulière.

OpenROV by OpenROV is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.